The magnitude of the electrostatic force between two charges is given by:

where
ke is the Coulomb's constant
q1 and q2 are the two charges
r is the separation between the two charges
We can see that the magnitude of the force is directly proportional to the charges. This means that when one of the charges is doubled, the magnitude of the electrostatic force will double as well, so the correct answer is
A) <span>The magnitude of the electrostatic force doubles</span>
Answer:
You would have to find the friction force of the rubber block which would be found with the equation of Normal force (mass*gravity) times cooeficient of friction which would give 8.82 N for the amount of friction and because you need more force than 8.82 N (assuming gravity is 9.8)
True, they had a hole in their hip socket that allowed them to run faster than other reptiles of their size at the time. As well as most reptiles besides reptiles had legs to the side, rather than under them like dinosaurs did.
Hope this helps!
Answer:
a. Ssystem > 40 J/K
Explanation:
Given that
The entropy of first block = 10 J/K
The entropy of second block = 30 J/K
When two bodies come into contact with each other, the entropy of the combined system will increase and the entropy sum remains unchanged: According to the Second law of thermodynamics.The entropy of the system will be greater than 40 J/K.
Therefore the answer is a.
Ssystem > 40 J/K