So basically you, then, finally, you
Answer:0.00125 watts
Explanation:
resistance=50 ohms
Current=5 milliamps
Current=5/1000 milliamps
Current =0.005 amps
power=(current)^2 x (resistance)
Power=(0.005)^2 x 50
Power=0.005 x 0.005 x 50
Power=0.00125 watts
1 hour = 3600 seconds.
Energy dissipated = I²Rt = 8²×20×3600 = 4608000 J
Answer:
b. 0.25cm
Explanation:
You can solve this question by using the formula for the position of the fringes:

m: order of the fringes
lambda: wavelength 500nm
D: distance to the screen 5 m
d: separation of the slits 1mm=1*10^{-3}m
With the formula you can calculate the separation of two adjacent slits:

hence, the aswer is 0.25cm
Answer:
The speed of the raft is 1.05 m/s
Explanation:
The equation for the position of the stone is as follows:
y = y0 + v0 · t + 1/2 · g · t²
Where:
y = height of the stone at time t
y0 = initial height
v0 = initial speed
t = time
g = acceleration due to gravity
The equation for the position of the raft is as follows:
x = x0 + v · t
Where:
x = position of the raft at time t
x0 = initial position
v = velocity
t = time
To find the speed of the raft, we have to know how much time the raft traveled until the stone reached the river. For that, we can calculate the time of free fall of the stone:
y = y0 + v0 · t + 1/2 · g · t² (v0=0 because the stone is dropped from rest)
If we place the origin of the frame of reference at the river below the bridge:
0 m = 95.6 m - 9.8 m/s² · t²
-95.6 m / -9,8 m/s² = t²
t = 3.12 s
We know that the raft traveled (4.84 m - 1.56 m) 3.28 m in that time, then the velocity of the raft will be:
x/t = v
3.28 m / 3.12 s = v
v = 1.05 m/s