Answer:
9.47 rad/s^2
Explanation:
Diameter = 15 cm, radius, r = diameter / 2 = 7.5 cm = 0.075 m, u = 0, v = 7.1 m/s,
s = 35.4 m
let a be the linear acceleration.
Use III equation of motion.
v^2 = u^2 + 2 a s
7.1 x 7.1 = 0 + 2 x a x 35.4
a = 0.71 m/s^2
Now the relation between linear acceleration and angular acceleration is
a = r x α
where, α is angular acceleration
α = 0.71 / 0.075 = 9.47 rad/s^2
25,000 Feet = 7620m
PE = mgh where m is mass, g is gravity accel: 9.8 n h is height
= 90 x 9.8 x 7620
= 6720840J
= 6.72MJ
F = ma where m is mass, a is accel = gravity = 9.8
= 90 x 9.8
= 882N
Accel = gravity = 9.8m/s^2
KE = 1/2mv^2 where m is mass n v is vel
if no wind resistance, PE leaving airplane = KE at net
6720840 = 1/2 x 90 x v^2
v^2 = 149352
v = 386.5m/s
Answer:
The intensity of sound (I) = 3.16 x 10⁻⁶ W/m²
Explanation:
We have expression for sound intensity level (SIL),

Here we need to find the intensity of sound (I).

Substituting
L = 67 dB and I₀ = 10⁻¹² W/m² in the equation

The intensity of sound (I) = 3.16 x 10⁻⁶ W/m²
Answer:
The answer is "False"
Explanation:
The geologic time scale is the "schedule" for occasions in Earth history. It partitions time into named units of unique time called in descending order of duration "eons, eras, periods, epochs, and ages". The specification of those geologic time units depends on stratigraphy, which is the relationship and order of rock layers. The fossil structures that happen in the stones, nonetheless, give the central methods for setting up a geologic time scale, with the circumstance of the development and vanishing of far and wide species from the fossil record being used to outline the beginnings and endings of ages,, periods, and different stretches.
Geologic time is the broad time period involved by the geologic history of Earth. Formal geologic time starts toward the beginning of the Archean Eon (4.0 billion to 2.5 billion years back) and proceeds to the current day.