Answer:
27,000 m
450 m/s
Explanation:
Assuming the initial velocity is 0 m/s:
v₀ = 0 m/s
a = 15 m/s²
t = 60 s
A) Find: Δy
Δy = v₀ t + ½ at²
Δy = (0 m/s) (60 s) + ½ (15 m/s²) (60 s)²
Δy = 27,000 m
B) Find: v_avg
v_avg = Δy / t
v_avg = 27,000 m / 60 s
v_avg = 450 m/s
As per the question, the mass of meteorite [ m]= 50 kg
The velocity of the meteorite [v] = 1000 m/s
When the meteorite falls on the ground, it will give whole of its kinetic energy to earth.
We are asked to calculate the gain in kinetic energy of earth.
The kinetic energy of meteorite is calculated as -
![Kinetic\ energy\ [K.E]\ =\frac{1}{2} mv^2](https://tex.z-dn.net/?f=Kinetic%5C%20energy%5C%20%5BK.E%5D%5C%20%3D%5Cfrac%7B1%7D%7B2%7D%20mv%5E2)
![=\frac{1}{2}50kg*[1000\ m/s]^2](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B2%7D50kg%2A%5B1000%5C%20m%2Fs%5D%5E2)

Here, J stands for Joule which is the S.I unit of energy.
Answer:
An asteroid impact could affect the tilt of the Earth due to the force it applies onto the planet. This would change Earth's seasons due to the fact that Earth's tilt causes seasons.
Physics - Damon, Wednesday, December 9, 2015 at 5:13am
F = k x
k = 2 g/6.1 cm
2.5g = (2g/6.1cm) x
x = 6.1 (2.5/2) cm
The answer is Infrared. The infrared of the electromagnetic spectrum is most of earth's outgoing terrestrial radiation. <span>Earth is the hot body with temperature of 30 degrees on the average.</span>