This question apparently wants you to get comfortable
with E = m c² . But I must say, this question is a lame
way to do it.
c = 3 x 10⁸ m/s
E = m c²
1.03 x 10⁻¹³ joule = (m) (3 x 10⁸ m/s)²
Divide each side by (3 x 10⁸ m/s)²:
Mass = (1.03 x 10⁻¹³ joule) / (9 x 10¹⁶ m²/s²)
= (1.03 / 9) x (10⁻¹³ ⁻ ¹⁶) (kg)
= 1.144 x 10⁻³⁰ kg . (choice-1)
This is roughly the mass of (1 and 1/4) electrons, so it seems
that it could never happen in nature. The question is just an
exercise in arithmetic, and not a particularly interesting one.
______________________________________
Something like this could have been much more impressive:
The Braidwood Nuclear Power Generating Station in northeastern
Ilinois USA serves Chicago and northern Illinois with electricity.
<span>The station has two pressurized water reactors, which can generate
a net total of 2,242 megawatts at full capacity, making it the largest
nuclear plant in the state.
If the Braidwood plant were able to completely convert mass
to energy, how much mass would it need to convert in order
to provide the total electrical energy that it generates in a year,
operating at full capacity ?
Energy = (2,242 x 10⁶ joule/sec) x (86,400 sec/day) x (365 da/yr)
= (2,242 x 10⁶ x 86,400 x 365) joules
= 7.0704 x 10¹⁶ joules .
How much converted mass is that ?
E = m c²
Divide each side by c² : Mass = E / c² .
c = 3 x 10⁸ m/s
Mass = (7.0704 x 10¹⁶ joules) / (9 x 10¹⁶ m²/s²)
= 0.786 kilogram ! ! !
THAT should impress us ! If I've done the arithmetic correctly,
then roughly (1 pound 11.7 ounces) of mass, if completely
converted to energy, would provide all the energy generated
by the largest nuclear power plant in Illinois, operating at max
capacity for a year !
</span>
Answer:
Aeronautical science is the science of flight, and this field relates to careers involved with the design and development of aircraft. Aeronautical engineers study how flight may be achieved within the earth's atmosphere and use that knowledge to pilot or design airplanes.
Explanation:
Answer:
The momentum of an object is defined as the mass of the object times the velocity of the object, as P = m*v.
So the equipment needed would be:
Something to measure the mass of the object, like a balance.
Something to measure the speed of the object, like a doppler radar, or a simpler thing may be a cronometer, with that you can measure the amount of time that the object needs to travel a given distance, and with that you can obtain the speed of the object.
Now you can notice that speed is different than velocity, this is true, velocity is a vector, so this has a direction, then you need something to fix the direction in which the object moves, in this way you can determine the velocity.
Answer:
First Order Neurons
Explanation:
First Order Neurons
The main function of First Order Neurons is to deliver sensory information from sensory receptors to the spinal cord.
In Actual there are three orders of neurons, the first order neuron carry signals from periphery to the spinal chord, the second order neuron carry signal from from spinal chord to the thalamus. And the third order neurons carry signals to the primary sensory cortex.
Velocity is about direction traveled in comparison to speed which is just distance with out direction