8 m/s
Explanation:
Using conservation of momentum :-

Where:
m1 = Mass of first vehicle
m2 = Mass of second vehicle
u1 = initial speed of first vehicle
v1 = initial speed of second vehicle
u2 = Final speed of first vehicle
v1 = Final speed of second vehicle
From the received informations:



So

Now divide both sides by m1 :-


Therefore, final answer is 8 m/s
C) When the time runs out (usually in sports such as soccer, but i don’t know what sport you’re referring to)
Answer:
Average current produced by the repeated transfer of charge is 5.6 × 10⁻⁷ ampere
Explanation:
The formula to be used here is
Q = It
where Q is the quantity of electricity and it is measured coulombs (C); 2.8 × 10⁻⁸ C or 0.000000028 C
I is current and it is measured in ampere (amps or A); unknown
t is time and it is measured in seconds (s); 0.05 s
Since, average current is what is unknown
I =Q/t
I = 0.000000028/0.05
I = 5.6 × 10⁻⁷ A
Average current produced by the repeated transfer of charge is 5.6 × 10⁻⁷ ampere
<span>Ball A with a mass of 0.500 kg is moving east at a velocity of 0.800 m/s. It strikes ball B, also of mass 0.500 kg, which is stationary. Ball A glances off B at an angle of 40.0° north of its...Two smart cars depart from the same starting location at the same time and travel different routes to the same destination, arriving at the same time. Explain why the cars travelled different...Given electric flux density D=0.3r^2 ar nc/m^2 in free space a. Find the total charge within the sphere r=3 b. Find the total electric flux leaving the sphere r=4</span>
Answer:
8 J and 2 J
Explanation:
Given that,
Mass of the rubber ball, m = 1 kg
Initial speed of the rubber ball, u = 4 m/s (in east)
Final speed of the rubber ball, v = -2 m/s (in west)
We need to find the kinetic energy of the ball before it hits the wall, the kinetic energy of the ball after it bounces off the wall.
Initial kinetic energy,

Final kinetic energy,

So, the initial kinetic energy is 8 J and the final kinetic energy is 2 J.