It's pretty simple. When air is leaking out of a tire, like a tiny hole or something, the pressure in the tire decreases, because without air in the tire, there is no pressure.
density = mass/volume = 100kg/10ml = 10kg/ml
voluime = mass/density = 50g/2 g/ml = 25 ml
mass = density x volume = 2x55 = 110 kg
V (speed) = F (frequency) x Wavelength
If we rearrange the formula, making frequency the subject;
F (frequency) = Speed ÷ Wavelength
F = 300,000 m\s x 4.5 e -10m
F = 0.08810409956 Hz
Answer:
Usually the coefficient of friction remains unchanged
Explanation:
The coefficient of friction should in the majority of cases, remain constant no matter what your normal force is. When you apply a greater normal force, the frictional force increases, and your coefficient of friction stays the same. Here's another way to think about it: because the force of friction is equal to the normal force times the coefficient of friction, friction is increased when normal force is increased.
Plus, the coefficient of friction is a property of the materials being "rubbed", and this property usually does not depend on the normal force.