1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
oksano4ka [1.4K]
3 years ago
5

Bernoulli’s principle helps explain the hydraulics of brake fluid in cars. true or false

Physics
2 answers:
IceJOKER [234]3 years ago
8 0
This statement is true.

<span>Bernoulli’s principle explains the relation between the speed of the fluid and the pressure or potential energy of the fluid.
Bernoulli explained that </span>an increase in the speed of a fluid is accompanied with a decrease in pressure<span> and potential energy of the fluid.  

This principle can be applied to the hydraulics </span><span>of brake fluid in cars. </span>
gavmur [86]3 years ago
7 0

Explanation :

The principle behind Hydraulic brakes is Pascal's law.

According to Bernoulli's principle, the speed of a fluid depends inversely on the pressure or on the potential energy of the fluid.

Mathematically,

P_1+\dfrac{1}{2}\rho v_1^2+\rho gh_1=P_2+\dfrac{1}{2}\rho v_2^2+\rho gh_2

According to Pascal's law, there is an equal distribution of the pressure in the container having fluids i.e.

P_1=P_2

Hence, the given statement is false.

You might be interested in
The main difference between internal combustion engine and the diesel engine is?
Sav [38]
<span>The difference between a internal combustion engine and a diesel engine is the ignition, But a Diesel engine is an internal combustion engine. The both burn internal one uses compression to fire the other uses ignition system.</span>
8 0
3 years ago
Read 2 more answers
Milk is an example of a(n)<br> solution<br> homogeneous mixture<br> colloid<br> compound
soldier1979 [14.2K]

Answer:

it is C. Colloid

Explanation:

8 0
3 years ago
Consider a bicycle wheel to be a ring of radius 30 cm and mass 1.5 kg. Neglect the mass of the axle and sprocket. If a force of
vredina [299]

Answer:

The angular speed after 6s  is \omega = 1466.67s^{-1}.

Explanation:

The equation

I\alpha  = Fd

relates the moment of inertia I of a rigid body, and its angular acceleration \alpha, with the force applied F at a distance d from the axis of rotation.

In our case, the force applied is F = 22N, at a distance d = 6cm =0.06m, to a ring with the moment of inertia of I =mr^2; therefore, the angular acceleration is

$\alpha =\frac{Fd}{I} $

$\alpha =\frac{22N*0.06m}{(1.5kg)*(0.06)^2} $

\alpha  = 244.44\: s^{-2}

Therefore, the angular speed \omega which is

\omega  = \alpha t

after 6 seconds is

\omega = 244.44$\: s^{-2}* 6s

\boxed{\omega = 1466.67s^{-1}}

7 0
3 years ago
Warning triangles, flares, a vehicle's hazard lights, or emergency vehicles ahead, are all clues that you might be approaching _
daser333 [38]

Answer:

B. A collision scene

Explanation:

It could have been a parade ceremony, but, if you notice the vehicle's hazard lights or an emergency vehicle ahead, it is common sense to figure that they is a collision scene nearby.

8 0
3 years ago
A box rests on top of a flat bed truck. The box has a mass of m = 16.0 kg. The coefficient of static friction between the box an
3241004551 [841]

Answer:

1) 1.31 m/s2

2) 20.92 N

3) 8.53 m/s2

4) 1.76 m/s2

5) -8.53 m/s2

Explanation:

1) As the box does not slide, the acceleration of the box (relative to ground) is the same as acceleration of the truck, which goes from 0 to 17m/s in 13 s

a = \frac{\Delta v}{\Delta t} = \frac{17 - 0}{13} = 1.31 m/s2

2)According to Newton 2nd law, the static frictional force that acting on the box (so it goes along with the truck), is the product of its mass and acceleration

F_s = am = 1.31*16 = 20.92 N

3) Let g = 9.81 m/s2. The maximum static friction that can hold the box is the product of its static coefficient and the normal force.

F_{\mu_s} = \mu_sN = mg\mu_s = 16*9.81*0.87 = 136.6N

So the maximum acceleration on the block is

a_{max} = F_{\mu_s} / m = 136.6 / 16 = 8.53 m/s^2

4)As the box slides, it is now subjected to kinetic friction, which is

F_{\mu_s} = mg\mu_k = 16*9.81*0.69 = 108.3 N

So if the acceleration of the truck it at the point where the box starts to slide, the force that acting on it must be at 136.6 N too. So the horizontal net force would be 136.6 - 108.3 = 28.25N. And the acceleration is

28.25 / 16 = 1.76 m/s2

5) Same as number 3), the maximum deceleration the truck can have without the box sliding is -8.53 m/s2

3 0
3 years ago
Other questions:
  • How does energy move predictably between a lien water in the air above it
    10·1 answer
  • A particle is moving with a velocity of 60.0 m/s in the positive x direction at t= 0. Between t= 0 and t= 15.0 s the velocity de
    12·1 answer
  • The temperature of an ideal gas in a sealed 0.5-m3 rigid container is reduced from 350 K to 270 K. The final pressure of the gas
    8·1 answer
  • A mass m1 is hung from a spring oscillates on a spring with spring constant k1. The amplitude of its motion is A1 and it has a m
    6·1 answer
  • You arrive in my class 45 seconds after leaving math which is 85 meters away. How fast did you travel?
    13·1 answer
  • The voltage across the terminals of an ac power supply varies with time according to V=V0cos(t). The voltage amplitude is V0 = 4
    5·1 answer
  • Which force is sometimes attractive and has an infinite range?
    5·2 answers
  • For the hypothetical salaries in the following
    5·1 answer
  • How do I find force?
    12·2 answers
  • According to the graph, during which time interval are the particles in the air slowing down?
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!