Answer:
Acceleration, 
Explanation:
Given that,
Height from a ball falls the ground, h = 17.3 m
It is in contact with the ground for 24.0 ms before stopping.
We need to find the average acceleration the ball during the time it is in contact with the ground.
Firstly, find the velocity when it reached the ground. So,

u = initial velocity=0 m/s
a = acceleration=g

It is in negative direction, u = -18.41 m/s
Let a is average acceleration of the ball. Consider, v = and u = -18.41 m/s.

So, the average acceleration of the ball during the time it is in contact is
.
The ball's gravitational potential energy is converted into kinetic energy as it falls toward the ground.
<h3>How can the height of a dropped ball be determined?</h3>
Y = 1/2 g t 2, where y is the height above the ground, g = 9.8 m/s2, and t = 1.3 s, is the formula for problems like these. Any freely falling body with an initial velocity of zero meters per second can use this formula. figuring out how much y is.
A ball drops from the top of a building and picks up speed as it descends. Its speed is increasing by 10 m/s every second. What we refer to as motion with constant acceleration is, for example, a ball falling due to gravity.
The ball's parabolic motion causes it to move at a speed of 26.3 m/s right before it strikes the ground, which is faster than its straight downhill motion, which has a speed of 17.1 m/s. Take note of the rising positive y direction in the above graphic.
To Learn more About potential energy, Refer:
brainly.com/question/14427111
#SPJ10
Answer:
Neap tides, which also occur twice a month, happen when the sun and moon are at right angles to each other. ... This occurs twice each month. The moon appears new (dark) when it is directly between the Earth and the sun. The moon appears full when the Earth is between the moon and the sun.
Answer: we can ues all the time
Explanation: and have fun with it
It depends on Mass and velocity