Well, first off, Newtons second law of motion <span>deals with the motion of accelerating and decelerating objects.
W</span>e already know that from everyday life examples such as simply pushing a car that if 2 people push a car on a flat road it will accelerate faster than if one person was pushing it... Therefore, there is a relationship between the size of the force and the acceleration.
Now onto the third law of motion. First of all, what is the third law of motion? Well, a force is a push or a pull that acts upon an object as a results of its interaction with another object. Forces result from interactions! According to Newtons third law, whenever one object, and another object interact with each other, they exert forces upon each other. "For every action, there is an equal and opposite reaction." The statement means that in every interaction, there is a pair of forces acting on the two interacting objects. So, how is this important to everyday life you may ask?
<span>Well, the action-reaction force pairs are found everywhere in your body.
For example, right now as I am typing, my tendons are exerting forces on bones, and those bones exert reaction forces on the tendons, as muscles contract, pulling my fingers on the keys. I press on those keys, and they press back on my fingers. See? Since i'm pressing on the keys, the press back on me. Its opposite from each other, as stated in the quite above. "</span><span>For every action, there is an equal and opposite reaction." </span>
Answer As a wave travels across the open ocean, it gains speed. When a wave reaches a shallow coastline, the wave begins to slow down due to the friction caused by the approaching shallow bottom. ... Think of it like driving a car at high speed and then slamming on the breaks. Everything is going to fly to the front.:Waves at the Shoreline: As a wave approaches the shore it slows down from drag on the bottom when water depth is less than half the wavelength (L/2). The waves get closer together and taller. ... Eventually the bottom of the wave slows drastically and the wave topples over as a breaker. hope this helps have a nice night❤️❤️❤️
Explanation:
Answer:
Heat transfer during the process = 0
Work done during the process = - 371.87 KJ
Explanation:
Initial pressure
= 0.02 bar
Initial temperature
= 200 K
Final pressure
= 0.14 bar
Gas constant for helium R = 2.077 
This is an isentropic polytropic process so temperature - pressure relationship is given by the following formula,
= ![[\frac{P_{2} }{P_{1} } ]^{\frac{\gamma - 1}{\gamma} }](https://tex.z-dn.net/?f=%5B%5Cfrac%7BP_%7B2%7D%20%7D%7BP_%7B1%7D%20%7D%20%5D%5E%7B%5Cfrac%7B%5Cgamma%20-%201%7D%7B%5Cgamma%7D%20%7D)
Put all the values in above formula we get,
⇒
= ![[\frac{0.14 }{0.02 } ]^{\frac{1.4 - 1}{1.4} }](https://tex.z-dn.net/?f=%5B%5Cfrac%7B0.14%20%7D%7B0.02%20%7D%20%5D%5E%7B%5Cfrac%7B1.4%20-%201%7D%7B1.4%7D%20%7D)
⇒
= 1.74
⇒
= 348.72 K
This is the final temperature of helium.
For isentropic polytropic process heat transfer to the system is zero.
⇒ ΔQ = 0
Work done W = m × (
-
) × 
⇒ W = 1 × ( 200 - 348.72 ) × 
⇒ W = 371.87 KJ
This is the work done in this process. here negative sign shows that work is done on the gas in the compression of gas.