Answer:
B
Explanation:
Recall the law of effusion:

Because 5 mol of oxygen was effused in 10 seconds, the rate is 0.5 mol/s.
Let the rate of oxygen be <em>r</em>₁ and the rate of hydrogen be <em>r</em>₂.
The molecular weight of oxygen gas is 32.00 g/mol and the molecular weight of hydrogen gas is 2.02 g/mol.
Substitute and solve for <em>r</em>₂:

Because there are 5 moles of hydrogen gas:

In conclusion, it will take about 2.5 seconds for the hydrogen gas to effuse.
Check: Because hydrogen gas is lighter than oxygen gas, we expect that hydrogen gas will effuse quicker than oxygen gas.
Number of O atoms : 24
<h3>Further explanation</h3>
Given
C₆H₁₂O₆ compound
Required
Number of atoms
Solution
A molecular formula shows the number of atomic elements in compound.
The empirical formula is the smallest comparison of the atoms
Glucose-C₆H₁₂O₆ is composed of 3 elements, namely C, H, and O.
The number of atoms in a compound can usually be seen from the subscript number after the atom and the reaction coefficient shows the number of molecules
So number of O atoms :
= 4 x 6 = 24 atoms
#1. The condition of the atmosphere at a certain time and certain place
#2. The rate of evaporation is EQUAL to the rate of condensation
Please mark Brainliest if this was helpful! :)
The compound that will have a sweet smell would be the one, whereby the molecular formula closely resembles that of an ether
R-O-R.
I believe the third one
Answer:
239.45 K
Explanation:
Ideal gas law formula is P1V1T2=P2V2T1
Rearrange that to get...
T2=T1P2V2/P1V1
Fill in the values and solve.