According to Charles law, we know, at constant pressure, volume is directly proportional to temperature.
So, <span>V/T = constant
</span>
V₁/t₁ = V₂/t₂
V₁t₂ = V₂t₁
Here, we have: V₁ = 9 mL
V₂ = ?
T₂ = 50+272 = 323 K
T₁ = 19+273 = 292 K
Substitute their values into the expression:
9 × 323 = V₂ × 292
V₂ = 2907 / 292
V₂ = 9.95
After rounding-off to unit place value, it would be equal to 10 mL
So, In short Option C would be your correct answer.
Hope this helps!
Answer:
it makes our work easy and
time saving
it multiply our force applied
it complete our work with high efficiency
by using this,less effort is required for the work.
Answer:
v = 66 m/s
Explanation:
Given that,
The initial velocity of a car, u = 0
Acceleration of the car, a = 11 m/s²
We need to find the final velocity of the toy after 6 seconds.
Let v is the final velocity. It can be calculated using first equation of motion. It is given by :
v = u +at
v = 0 + 11 m/s² × 6 s
v = 66 m/s
So, the final velocity of the car is 66 m/s.
Answer:
Mass of the aluminium chunk = 278.51 g
Explanation:
For an isolated system as given the energy lost and gains in the system will be zero therefore sum of all transfer of energy will be zero,as the temperature will also remain same
A specific heat formula is given as
Energy Change = Mass of liquid x Specific Heat Capacity x Change in temperature
Q = m×c×ΔT
Heat gain by aluminium + heat lost by copper = 0 (1)
For Aluminium:
Q = 
Q = m x 17.94 joule
For Copper:

Q= 4996.53 Joule
from eq 1
m x 17.94 = 4996.53

Mass of the aluminium chunk = 278.51 g
Answer:
In conductive materials, the outer electrons in each atom can easily come or go, and are called free electrons. In insulating materials, the outer electrons are not so free to move. All metals are electrically conductive.