Explanation:
The criteria for decision making would be
1. I would fund for the school of young diabetics, for the sole purpose of them leaning and being motivated for a healthy lifestyle.
2. I would also fund for new and improved insulin pumps as old ones cause multiple problems.
Answer:
8 colors in alphabetical order are
Black
blue
brown
Green
Orange
Pink
Purple
Yellow
Explanation:
<h3><u>Answer;</u></h3>
40 light bulbs
<h3><u>Explanation</u>;</h3>
The total resistance of components or bulbs in series is given as the sum of resistance of all the components.
Thus; if there are bulbs in series each with a resistance of 1.5 Ω, the the total resistance will be; 1.5nΩ
From the ohms law;
V = IR , where V is the voltage, I is the current and R is the resistor.
Thus; R = V/i
R = 120/2
= 60 Ω
But, there are n bulbs each with 1.5 Ω; thus there are;
n = 60/1.5
<u> = 40 Bulbs </u>
Answer:
The circular loop experiences a constant force which is always directed towards the center of the loop and tends to compress it.
Explanation:
Since the magnetic field, B points in my direction and the current, I is moving in a clockwise direction, the current is always perpendicular to the magnetic field and will thus experience a constant force, F = BILsinФ where Ф is the angle between B and L.
Since the magnetic field is in my direction, it is perpendicular to the plane of the circular loop and thus perpendicular to L where L = length of circular loop. Thus Ф = 90° and F = BILsin90° = BIL
According to Fleming's left-hand rule, the fore finger representing the magnetic field, the middle finger represent in the current and the thumb representing the direction of force on the circular loop.
At each point on the circular loop, the force is always directed towards the center of the loop and thus tends to compress it.
<u>So, the circular loop experiences a constant force which is always directed towards the center of the loop and tends to compress it.</u>
Answer:
(a) 7 m
(b) 1 m
Explanation:
Given:
The magnitude of displacement vector 'a' is 3 m
The magnitude of displacement vector 'b' is 4 m.
The vector 'c' is the vector sum of vectors 'a' and 'b'.
(a)
Now, when the angle between the vectors is 0°, it means that the vectors are in the same direction. When vectors are in the same direction, then their resultant magnitude is simply the sum of their magnitudes.
So, magnitude of 'c' when 'a' and 'b' are in same direction is given as:

Therefore, the magnitude of vector 'c' is 7 m when angle between 'a' and 'b' is 0°.
(b)
When the angle between the vectors is 180°, it means that the vectors are exactly in the opposite direction. When the vectors are in opposite direction, then their resultant magnitude is the subtraction of their magnitudes.
So, magnitude of 'c' when 'a' and 'b' are in opposite direction is:

Therefore, the magnitude of vector 'c' is 1 m when angle between 'a' and 'b' is 180°.