Answer:
200N
Explanation:
mass(m) = 10 kg
acceleration(a) = 20 m/s^2
Force = mass * acceleration
= 10*20
= 200 N
Force = 200N
Risk of not being able to reduce their weight
The so-called "terminal velocity" is the fastest that something can fall
through a fluid. Even though there's a constant force pulling it through,
the friction or resistance of plowing through the surrounding substance
gets bigger as the speed grows, so there's some speed where the resistance
is equal to the pulling force, and then the falling object can't go any faster.
A few examples:
-- the terminal velocity of a sky-diver falling through air,
-- the terminal velocity of a pecan falling through honey,
-- the terminal velocity of a stone falling through water.
It's not possible to say that "the terminal velocity is ----- miles per hour".
If any of these things changes, then the terminal velocity changes too:
-- weight of the falling object
-- shape of the object
-- surface texture (smoothness) of the object
-- density of the surrounding fluid
-- viscosity of the surrounding fluid .
Answer: Line graph should be used to show how one variable changes over time not to show multiple categories or variables are at one specific point in time.
Explanation:
In maths, statistics, and related fields, graphs are used to visually display variables and their values. In the case of line graphs, these are mainly used to display evolution or change of a variable over time. For example, a line graph can show how the number of divorces changed from 1920 to 2010.
In this context, the number of different animals in the park cannot be represented through a line graph because this situation does not imply a variable changing over time. Moreover, this situation includes multiple variables or categories of animals and the data shows only one specific point in time, which can be better represented through a bar graph.
<h2>Answer:</h2>
The refractive index is 1.66
<h2>Explanation:</h2>
The speed of light in a transparent medium is 0.6 times that of its speed in vacuum
.
Refractive index of medium = speed of light in vacuum / speed of light in medium
So
RI = 1/0.6 = 5/3 or 1.66