Answer:
249 L
Explanation:
Step 1: Write the balanced equation
C₃H₈(g) + 5 O₂(g) → 3 CO₂(g) + 4 H₂O(g)
Step 2: Calculate the moles of CO₂ produced from 5.00 moles of C₃H₈
The molar ratio of C₃H₈ to CO₂ is 1:3. The moles of CO₂ produced are 3/1 × 5.00 mol = 15.0 mol
Step 3: Convert "30.0°C" to Kelvin
We will use the following expression.
K = °C + 273.15
K = 30.0°C + 273.15 = 303.2 K
Step 4: Calculate the volume of carbon dioxide
We will use the ideal gas equation.
P × V = n × R × T
V = n × R × T/P
V = 15.0 mol × 0.0821 atm.L/mol.K × 303.2 K/1.50 atm
V = 249 L
Answer:
the answer is a
Explanation:
i did process of elimination and i got a
Answer:
C . 24 L
Explanation:
Given data:
Initial volume of gas = 20.0 L
Initial pressure of gas = 660 mmHg
Final volume = ?
Final pressure = 550 mmHg
Solution:
The given problem will be solved through the Boly's law,
"The volume of given amount of gas is inversely proportional to its pressure by keeping the temperature and number of moles constant"
Mathematical expression:
P₁V₁ = P₂V₂
P₁ = Initial pressure
V₁ = initial volume
P₂ = final pressure
V₂ = final volume
Now we will put the values in formula,
P₁V₁ = P₂V₂
660 mmHg × 20.0 L = 550 mmHg × V₂
V₂ = 13200 mmHg. L/ 550 mmHg
V₂ = 24 L
Answer:
The purpose of the experiment is to see how water of different temperature and salinity affect the density.
Explanation:
Temperature and salinity directly affect the density of the water. Water of low temperature is more dense than water of high temperature, BUT, (fresh)water with no salt is less dense than (sea)water with more salt, so temperature and salinity change density of water.
I think the correct answer from the choices listed above is option B. The following reaction does not proceed to form a product: H2O + Au---> no reaction because gold has a lower activity than hydrogen and cannot replace it. Hope this answers the question.