Answer:
N₂ + 3H₂ → 2NH₃ ΔH = - 92.2KJ
Explanation:
Let's write out the chemical equation between Nitrogen and Hydrogen to Form Ammonia.
Nitrogen + Hydrogen = Ammonia
N₂ + H₂ → NH₃
A Thermochemical Equation is a balanced stoichiometric chemical equation that includes the enthalpy change, ΔH.
The balanced stoichiometric chemical equation is given as;
N₂ + 3H₂ → 2NH₃
92.2 kJ of energy are evolved for each mole of N2(g) that reacts. And from the equation, 1 mole of N2 reacts.
The enthalpy change, ΔH = - 92.2KJ. The negative sign is because heat is being evolved.
The balanced thermochemical equation;
N₂ + 3H₂ → 2NH₃ ΔH = - 92.2KJ
I thinlk it's by radiation?......
Transition metals are from group 3 to group 12.
I think is 1 and a half km
Answer:
18.3 kilopascals
Explanation:
We are given that the volume of this container is 0.0372 meters^3, that the mass of water is 4.65 grams, and that the temperature of this water vapor ( over time ) is 368 degrees Kelvins. This is a problem where the ideal gas law is an " ideal " application.
_______________________________________________________
First calculate the number of moles present in the water ( H2O ). Water has a mass of 18, so it should be that n, in the ideal gas law - PV = nRT, is equal to 4 / 18. It is the amount of the substance.
We now have enough information to solve for P in PV = nRT,
P( 0.0372 ) = 4 / 18( 8.314 )( 368 ),
P ≈ 18,276.9
Pressure ≈ 18.3 kilopascals
<u><em>Hope that helps!</em></u>