Answer:
The correct answer is 1 glycogen degradation would slow down.
Explanation:
Glycogen is the principle storage polysaccharide present in the liver and muscle of human body.
Glycogen contain both alpha-1,4-glycosidic linkage and alpha -1,6-glycosidic linkage.During glycogenolysis some glucose residues are transferred from branch point of the glycogen to its end and thereafter a single glucose residue is linked to the branch point of glycogen by alpha-1,6-glycosidic linkage.
The alpha-1,6-glycosidic linked glucose of glycogen is finally get separated from glycogen by the catalytic activity of alpha-1,6-glycosidase enzyme in the final step of glycogenolysis.
According to the given question if there is no alpha-1,6-glycosidic linkage in the glycogen then glycogen degradation will slow down.
Answer:
Below:
Explanation:
To calculate an energy change for a reaction: add together the bond energies for all the bonds in the reactants - this is the 'energy in' add together the bond energies for all the bonds in the products - this is the 'energy out.
Hope it helps....
It's Muska
Thank you for posting your question here at brainly. Below is the solution:
<span>moles HClO4 = 0.100 L x 0.18 M = 0.018
moles LiOH = 0.030 L x 0.27 = 0.0081
moles H+ in excess = 0.018 - 0.0081 = 0.0099
total volume = 0.130 L
[H+] = 0.0099/ 0.130= 0.0762 M
pH = 1.12</span>