The moles of fluorine present are 71/19 = 3.74
Now, we know that one mole of gas at 273 K and 101.3 kPa (S.T.P.) occupies 22.4 liters
Volume of 3.74 moles at S.T.P = 3.74 x 22.4
Volume = 83.776 L = 83,776 mL
Now, we use Boyle's law, that for a given amount of gas,
PV = constant
P x 6843 = 101.3 x 83776
P = 1,240 kPa
It is not good conductors of electricity or heat!
Answer:
Hence, 15.99 g of solid Aluminum Sulfate should be added in 250 mL of Volumetric flask.
Explanation:
To make 0.187 M of Aluminum Sulfate solution in a 250 mL (0.250 L) Volumetric flask
The molar mass of Aluminum Sulfate = 342.15 g/mol
Using the molarity formula:-
Molarity = Number of moles/Volume of solution in a liter
Number of moles = Given weight/ molar mass
Molarity = (Given weight/ molar mass)/Volume of solution in liter
0.187 M = (Given weight/342.15 g/mol)/0.250 L
Given weight = 15.99 g
Two protons and two neutrons are emitted and trapped as materials like uranium and thorium deep underground decay into radium and thorium, respectively. These alpha-particles transform into stable helium atoms as they take on electrons from their surroundings.
<h3>
What elements go through alpha decay?</h3>
Alpha decay usually occurs in heavy nuclei such as uranium or plutonium, and therefore is a major part of the radioactive fallout from a nuclear explosion.
<h3>
Where does alpha decay occur?</h3>
Alpha decay occurs most often in massive nuclei that have too large a proton to neutron ratio. An alpha particle, with its two protons and two neutrons, is a very stable configuration of particles.
Learn more about alpha decay here:
brainly.com/question/1898040
#SPJ4
Answer:
if a solid appears when mixing two liquids
Explanation:
i remember this question :D