Answer:
Explained
Explanation:
public int dimension(int [][]a2d,int nElements)
{
int count = 0;
for(int i = 0;i < a2d.length ; i++)
{
count = count + a2d[i].length;
}
return count;
}
Calm, sunny days with wind moving away from the center.
Answer:
8.1 x 10^13 electrons passed through the accelerator over 1.8 hours.
Explanation:
The total charge accumulated in 1.8 hours will be:
Total Charge = I x t = (-2.0 nC/s)(1.8 hrs)(3600 s/ 1 hr)
Total Charge = - 12960 nC = - 12.96 x 10^(-6) C
Since, the charge on one electron is e = - 1.6 x 10^(-19) C
Therefore, no. of electrons will be:
No. of electrons = Total Charge/Charge on one electron
No. of electrons = [- 12.96 x 10^(-6) C]/[- 1.6 x 10^(-19) C]
<u>No. of electrons = 8.1 x 10^13 electrons</u>
First, create an illustration of the motion of the two cars as shown in the attached picture. The essential equations used is
For constant acceleration:
a = v,final - v,initial /t
The solutions is as follows:
a = v,final - v,initial /t
3.8 = (v - 0)/2.8 s
v = 10.64 m/s After 2.8 seconds, the speed of the blue car is 10.64 m/s.
I already answered this quesiton. The fact is that there are only two kind of poles and since the two taped poles of the magnets labeled A and B attracts one to each other, we know that the two taped poles of the first two magnets are oppsosite.
Then, the taped pole of the third magnet has to be equal to one of the first two taped poles and opposite to the other of the first two taped poles.
That drives you to conclude (predict) that when she brings the taped end of the third magnet (magnet C) near each of the first two magntes, in one case they will attract each other and in the other case they will repele mutually.