Answer:
1min since there is no gravity on the moon so it will take time to drop on the moon.
Explanation:
Answer:
15.88°C I am not 100% sure this is right but I am 98% sure this IS right
Answer:
ΔU = 5.21 × 10^(10) J
Explanation:
We are given;
Mass of object; m = 1040 kg
To solve this, we will use the formula for potential energy which is;
U = -GMm/r
But we are told we want to move the object from the Earth's surface to an altitude four times the Earth's radius.
Thus;
ΔU = -GMm((1/r_f) - (1/r_i))
Where;
M is mass of earth = 5.98 × 10^(24) kg
r_f is final radius
r_i is initial radius
G is gravitational constant = 6.67 × 10^(-11) N.m²/kg²
Since, it's moving to altitude four times the Earth's radius, it means that;
r_i = R_e
r_f = R_e + 4R_e = 5R_e
Where R_e is radius of earth = 6371 × 10³ m
Thus;
ΔU = -6.67 × 10^(-11) × 5.98 × 10^(24)
× 1040((1/(5 × 6371 × 10³)) - (1/(6371 × 10³))
ΔU = 5.21 × 10^(10) J
Telepathy duhh like when SpongeBob stared at Patrick he know they where thinking the same thing or maybe that was because they are both idiots i dont know <span />
Answer:
A
Explanation:
Work = F * d
Power = work/time or f *d / t
' A ' gives the highest amount of power