Answer:
changing the polarity or direction of the battery changes the sign of the voltage and the current
Explanation:
The sign of current and voltage are due to established conventions.
The way that a DC circuit with negative current values is by changing the polarity of the power source or by inverting the battery, this creates that the electrons move in the opposite direction
Changing the battery also changes the direction of the power difference, since the potential from positive to negative, in most cases negative is assigned a potential of zero volts
In summary, changing the polarity or direction of the battery changes the sign of the voltage and the current
Answer:
The distance is 0.53 m.
Explanation:
Given that,
Target distance = 100.0 m
Speed of bullet = 300 m/s
We need to calculate the total time
Using formula of time

Put the value into the formula


Now, consider vertical motion of bullet.
Initial velocity of bullet in vertical direction = 0 m/s
We need to calculate the vertically distance
Using equation of motion

Put the value in the equation


Hence, The distance is 0.53 m.
Answer:
e = Δφ / Δt induced emf is proportional to enclosed flux
Also φ = B * A flux is proportional to area and enclosed field
If the induced emf e increases with time than the flux and hence the magnetic field is increasing with time (replace B with G)
Since e = ΔG * A / Δt if e is linear then G must also be linear and be proportional to the time
Answer:
Energy is transformed from potential to kinetic and vice versa
Explanation:
The energy is transformed from mechanical to kinetic energy when the object changes its position with respect to a reference point, where it loses height but increases its speed. When the object is at maximum height with respect to a reference point, it will have its maximum potential energy value. When the object passes through the reference point it will have potential energy equal to zero, but this energy will become kinetic energy.
The most characteristic and real example is that of a pendulum at one end, as can be seen in the attached image.
When the pendulum is located at the top end, as shown in Figure 1, at that point the maximum potential energy will be held. Then the pendulum is released and when it passes through the reference point and its height is zero, with respect to that point, all potential energy will have become kinetic energy in the same way at this point the maximum speed of the pendulum will be set.