Answer: One quarter of the force
Explanation:
According to Newton's law of Gravitation, the force
exerted between two bodies of masses
and
and separated by a distance
is equal to the product of their masses and inversely proportional to the square of the distance:
(1)
Where
is the gravitational constant
This means that the gravity force decreases when the distance between these two bodies increases.
In this context, if the distance between the capsule and the Earth increases twice, the new distance will be
.
Substituting this distance in (1):
(2)
<u>Finally:</u>
>>>This means the force toward Earth becomes one quarter "weaker"
Answer:
Explanation:
The moment of inertia is the integral of the product of the squared distance by the mass differential. Is the mass equivalent in the rotational motion
a) True. When the moment of inertia is increased, more force is needed to reach acceleration, so it is more difficult to change the angular velocity that depends proportionally on the acceleration
b) True. The moment of inertia is part of the kinetic energy, which is composed of a linear and an angular part. Therefore, when applying the energy conservation theorem, the potential energy is transformed into kinetic energy, the rotational part increases with the moment of inertia, so there is less energy left for the linear part and consequently it falls slower
c) True. The moment of inertial proportional to the angular acceleration, when the acceleration decreases as well. Therefore, a smaller force can achieve the value of acceleration and the change in angular velocity. Consequently, less force is needed is easier
<span>about $137.00 (plug n play) http://store.racer-union.com try this web site they are the cheapest by about 100 dollars.</span>
It's equals to zero (a=0)