The correct option that can be deduced for both Object P and Q is Option b) I and II only
To solve this question correctly, we need to understand the concept of density and it relation to mass and volume.
<h3>What is Density?</h3>
Density is a physical property of an object and can be expressed by using the relation:

From the given parameters, we are being told that:
This implies that Q has a greater density that P. Since Q has a greater density than P, Q will be heavier since it will have greater mass.
However, Q will not be denser than water because if that happens, P will be have a greater density which is untrue in this scenario.
Therefore, we can conclude that:
- 1. Q is heavier than P
- II. 1cm³ of Q has a greater mass than 1cm³ of P
Learn more about density here:
brainly.com/question/6838128
Answer:
Required energy Q = 231 J
Explanation:
Given:
Specific heat of copper C = 0.385 J/g°C
Mass m = 20 g
ΔT = (50 - 20)°C = 30 °C
Find:
Required energy
Computation:
Q = mCΔT
Q = 20(0.385)(30)
Required energy Q = 231 J
The atoms which make up the ion are covalently bonded to one another. 19) It is possible for a compound to possess both ionic and covalent bonding. a. If one of the ions is polyatomic then there will be covalent bonding within it.
Combine all of the x's on one side of the equation and then finish the problem!