Answer:
40
Explanation:
rule: K.E = 1/2 m×v^2
1/2 × 5 × (4)^2= 40 joule
Answer:
The extension is directly proportional to the force applied.
ex: if the force is doubled, the extension doubles. This works until the limit of proportionality is exceeded.
Hope this helped~
Explanation:
Answer:
a. the magnitude of the force experienced by the muon is 2.55 × 10⁻¹⁹N
b. this force compare to the weight of the muon; the force is 1.38 × 10⁸ greater than muon
Explanation:
F= ma
v²=u² -2aS
(1.56 ✕ 10⁶)²=(2.40 ✕ 10⁶)²-2a(1220)
a=1.36×10⁹m/s²
recall
F=ma
F = 1.88 ✕ 10⁻²⁸ kg × 1.36×10⁹m/s²
F= 2.55 × 10⁻¹⁹N
the magnitude of the force experienced by the muon is 2.55 × 10⁻¹⁹N
b. this force compare to the weight of the muon
F/mg= 2.55 × 10⁻¹⁹/ (1.88 ✕ 10⁻²⁸ × 9.8)
= 1.38 × 10⁸
Answer:
Nitrogen is N, neon is Ne
Answer:
The tension in string is found to be 188.06 N
Explanation:
For the vibrating string the fundamental frequency is given as:
f1 = v/2L
where,
f1 = fundamental frequency = 335 Hz
v = speed of wave
L = length of string = 28.5 cm = 0.285 m
Therefore,
v = f1 2L
v = (335 Hz)(2)(0.285)
v = 190.95 m/s
Now, for the tension:
v = √T/μ
v² = T/μ
T = v² μ
where,
T = Tension
v = speed = 190.95 m/s
μ = linear mass density of string = mass/L = 0.00147 kg/0.285 m = 5.15 x 10^-3 kg/m
Therefore,
T = (190.95 m/s)²(5.15 x 10^-3 kg/m)
<u>T = 188.06 N</u>