Answer:
d. None of the above.
Explanation:
In a parabolic motion, you have that in the complete trajectory the component velocity is constant and the vertical component changes in time. Then, the total velocity vector is not zero.
In the complete trajectory the gravitational acceleration is always present. Then, the grasshopper's acceleration vector is not zero.
At the top of the arc the grasshopper is not at equilibrium because the gravitational force is constantly acting on the grasshopper.
Then, the correct answer is:
d. None of the above.
Answer:
Momentum after collision will be 6000 kgm/sec
Explanation:
We have given mass of the whale = 1000
Initial velocity v = 6 m/sec
It collides with other mass of 200 kg which is at stationary
Initial momentum of the whale = 1000×6 = 6000 kgm/sec
We have to find the momentum after collision
From conservation of momentum
Initial momentum = final momentum
So final momentum = 6000 kgm/sec
Answer:

Explanation:
Given that,
The instantaneous current in the circuit is giveen by :

We need to find the rms value of the current.
The general equation of current is given by :

It means, 
We know that,

So, the rms value of current is 2.12 A.
Answer:
2m/s/s
Explanation:
The formula goes- F=MA
F-Force M-Mass & A-Acceleration
We need to rearrange this formula to find the acceleration-
A=F/M
All we need to do now is substitute the values in
A=2000N/1000kg
A=2m/s^2
In the given option the last option (2m/s/s) would be the ans, as it's the same as 2m/s^2
So ya, I guess that's all