Answer:
Fe₂(SO₄)₃ + 6KOH —> 3K₂SO₄ + 2Fe(OH)₃
The coefficients are: 1, 6, 3, 2
Explanation:
__Fe₂(SO₄)₃ + __KOH —> __K₂SO₄ + __Fe(OH)₃
To determine the correct coefficients, we shall balance the equation. This can be obtained as follow:
Fe₂(SO₄)₃ + KOH —> K₂SO₄ + Fe(OH)₃
There are 2 atoms of Fe on the left side and 1 atom on the right side. It can be balance by writing 2 before Fe(OH)₃ as shown below:
Fe₂(SO₄)₃ + KOH —> K₂SO₄ + 2Fe(OH)₃
There are 6 atoms of OH on the right side and 1 atom on the left side. It can be balance by writing 6 before KOH as shown below:
Fe₂(SO₄)₃ + 6KOH —> K₂SO₄ + 2Fe(OH)₃
There are 6 atoms of K on the left side and 2 atoms on the right side. It can be balance by writing 3 before K₂SO₄ as shown below:
Fe₂(SO₄)₃ + 6KOH —> 3K₂SO₄ + 2Fe(OH)₃
Now, the equation is balanced.
Therefore, the coefficients are: 1, 6, 3, 2
Answer:
78.3 × 10²³ atoms of helium are present in 52 g.
Explanation:
Given data:
Mass of He = 52 g
Number of atoms = ?
Solution:
First of all we will calculate the number of moles of He
Number of moles = mass /molar mass
Number of moles = 52 g/ 4 g/mol
Number of moles = 13 mol
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
For example,
1 mole = 6.022 × 10²³ atoms of helium
13 mol × 6.022 × 10²³ atoms of helium / 1 mole
78.3 × 10²³ atoms of helium
Hi, thank you for posting your question here at Brainly.
The acid dissociation constant, Ka, is an equilibrium constant that measure the strength of an acid. It is a ratio of the concentration of the products (salt and water) and the reactants (acid). The higher the Ka, the more tendency it is to favor the product side, which means more tendency to donate H+ ions. This is exactly the definition of a strong acid (high H+ ionized).
Thus, the answer is letter D.