Answer:
Q = 306 kJ
Explanation:
Given that,
Mass, m = 60 kg
Specific heat, c = 1020 J/kg°C
The temperature changes from 20°C to 25°C.
Let Q be the change in thermal energy. The formula for the heat released is given by :

Put all the values,

So, 306 kJ is the change in thermal energy.
Mitosis- asexual reproduction
Quick
for reproductive purposes
Meiosis-sexual reproduction
Takes longer
For repairing
Here is the full question:
Air containing 0.04% carbon dioxide is pumped into a room whose volume is 6000 ft3. The air is pumped in at a rate of 2000 ft3/min, and the circulated air is then pumped out at the same rate. If there is an initial concentration of 0.2% carbon dioxide, determine the subsequent amount in the room at any time.
What is the concentration at 10 minutes? (Round your answer to three decimal places.
Answer:
0.046 %
Explanation:
The rate-in;

= 0.8
The rate-out
= 
= 
We can say that:

where;
A(0)= 0.2% × 6000
A(0)= 0.002 × 6000
A(0)= 12

Integration of the above linear equation =

so we have:



∴ 
Since A(0) = 12
Then;



Hence;



∴ the concentration at 10 minutes is ;
=
%
= 0.0456667 %
= 0.046% to three decimal places
Answer:
1.) 13 g C₄H₁₀
2.) 41 g CO₂
Explanation:
To find the mass of propane (C₄H₁₀) and carbon dioxide (CO₂), you need to (1) convert mass O₂ to moles O₂ (via molar mass), then (2) convert moles O₂ to moles C₄H₁₀/CO₂ (via mole-to-mole ratio from equation coefficients), and then (3) convert moles C₄H₁₀/CO₂ to mass C₄H₁₀/CO₂ (via molar mass). It is important to arrange the ratios in a way that allows for the cancellation of units. The final answers should have 2 sig figs to match the sig figs of the given value.
Molar Mass (C₄H₁₀): 4(12.011 g/mol) + 10(1.008 g/mol)
Molar Mass (C₄H₁₀): 58.124 g/mol
Molar Mass (CO₂): 12.011 g/mol + 2(15.998 g/mol)
Molar Mass (CO₂): 44.007 g/mol
Molar Mass (O₂): 2(15.998 g/mol)
Molar Mass (O₂): 31.996 g/mol
2 C₄H₁₀ + 13 O₂ ----> 8 CO₂ + 10 H₂O
48 g O₂ 1 mole 2 moles C₄H₁₀ 58.124 g
--------------- x ----------------- x -------------------------- x ------------------ =
31.996 g 13 moles O₂ 1 mole
= 13 g C₄H₁₀
48 g O₂ 1 mole 8 moles CO₂ 44.007 g
--------------- x ----------------- x -------------------------- x ------------------ =
31.996 g 13 moles O₂ 1 mole
= 41 g CO₂
Answer: it will take 89.93secs
Explanation:Please see attachment for explanation