Complex compounds are broken down to simpler substances in catabolic reactions.
These kinds of reactions often occur in biological systems. In living organisms, complex compounds like lipids, proteins and complex sugar like cellulose are broken down into simpler forms. Products of these reactions are simple sugars, amino acids etc. but a certain amount of energy is also produced and stored in energy molecules for future use.
Answer:
Answer of question a is 345J.
Explanation:
In question a following is given in data:
-mass of iron (m) = 10.0 g
-temperature (ΔT) = final temperature- initial temperature= 100-25= 75 degree Celsius
-Specific Heat capacity of iron (c)= 0.46J/g°C.
Heat (Q)=?
Solution:
Formula for Heat is :
Q=m x c x ΔT
Q= 10 x 0.46 x 75
Q= 345 J.
so, 345 joules of heat is needed to increase the temperature of 10 grams of iron.
- From the above formula all other questions can easily be solved from the same procedure.
Since
potassium and phosphate is what we are to find for and they are both found in
the potassium phosphate solution, therefore we solve for this one first on the
basis of the phosphate.
The formula
for finding the volume given the concentration and number of moles is:
Volume =
number of moles / concentration in Molarity
Volume
potassium phosphate required = 30 mmol phosphate / (3 mmol / mL)
<u>Volume
potassium phosphate required = 10 mL</u>
This would
also contain potassium in amounts of:
Amount of
potassium in potassium phosphate = 10 mL (4.4 meg / mL)
Amount of
potassium in potassium phosphate = 44 meg
Therefore
the potassium chloride required is:
Volume of
potassium chloride = (80 meg – 44 meg) / (2 meg / mL)
<span><u>Volume of
potassium chloride = 72 mL</u></span>
Answer:
option "B" is correct (substance 2)