An Exothermic reaction releases energy into the surroundings and so the products have more potential energy then the reactants. The enthalpy change is a negative value. Whereas, an endothermic reaction involves the absorption of energy into the system and so the reactants have more potential energy than the products. The enthalpy change is a positive value. This is clearly represented in energy profile diagrams.
Answer:
The smallest ballon is the ballon X
Explanation:
It is possible to answer this question by using Graham's law:

Where v is the speed of effusion and MW is molar weight of each compound.
This equation is showing that speed is inversely related to the square root of its molar mass. As carbon dioxide has a bigger MW than carbon monoxide, the speed of effusion of carbon dioxide is lower doing its ballon biggest than carbon monoxide ballon, thus: <em>The smallest ballon is the ballon X</em>
<em></em>
I hope it helps!
Answer:
check out this website,it might help.
Explanation:
https://courses.lumenlearning.com/boundless-chemistry/chapter/physical-and-chemical-properties-of-matter/
Im really not the smartest in the world.
<em><u>Website was not made by me, im just a lazy potat0.</u></em>
A word equation is a chemical reaction described using words.
A common example is the act of photosynthesis - the process plants use to make glucose (sugar) to use as 'food'.
Plants convert water and carbon dioxide into oxygen and glucose.
A word equation to express this is:
Water + Carbon Dioxide → Glucose + Oxygen
The other type of equation is a symbol equation - this uses the symbols of the elements instead of the common names:
H₂O + CO₂ → C₆H₁₂O₆ + O₂
There is also a balanced version:
6H₂O + 6CO₂ → C₆H₁₂O₆ + 6O₂
<em>If you want information on the balanced symbol equations, feel free to PM me.</em>
Answer:
1.2 moles
Explanation:
this is the balanced equation for the reaction of oxygen (O2) and hydrogen (H2), usually we don't write the 1 in front of O2
2H₂ + 10₂ → 2H₂O
the molar ratio of hydrogen to oxygen is 2 : 1
we are trying to react with 2.4 mol of H2 so the moles of O2 is half the number of moles of H2 = 2.4 ÷ 2 = 1.2 mol
another way to think of it:
2H₂ + 10₂
2 : 1
2.4 mol : x mol
to get from 2 to 2.4 multiply by 1.2, so do the same to the other side
1 × 1.2 = 1.2 mol