You have to use the Henderson-Hasselbalch equation. Keep in mind that because the Pka is given the equation changes form slightly:
PH = Pka + log[acid/base]
Step 1 (Figure out the concentrations):
0.282 M of Acid (C6H5OOH) - 0.150 M = 0.132 M of acid
0.282 M of Base (C6HCOO) + 0.150 M = 0.432 M of bas3
Step 2 (Plug into equation):
PH = Pka + log[acid/base]
PH = 4.20 + log[0.132 M/0.432 M]
PH = 3.69
then the electrons and protons would have a even amount of negetive electric charges
Answer:
Sample A is a mixture
Sample B is a mixture
Explanation:
For sample A, we are told that the originally yellow solid was dissolved and we obtained an orange powder at the bottom of the beaker. Subsequently, only about 30.0 g of solid was recovered out of the 50.0g of solid dissolved. This implies that the solid is not pure and must be a mixture. The other components of the mixture must have remained in solution accounting for the loss in mass of solid obtained.
For sample B, we are told that boiling started at 66.2°C and continued until 76.0°C. The implication of this is that B must be a mixture since it boils over a range of temperatures. Pure substances have a sharp boiling point.
<span>In the cells of the human body,oxygen molecules are used directly in a process that releases energy</span>
Answer:
B is the correct answer hope it helps