A buffer solution contains 0.345 M acetic acid and 0.377 M sodium acetate . If 0.0613 moles of potassium hydroxide are added to
250 mL of this buffer, what is the pH of the resulting solution ? (Assume that the volume does not change upon adding potassium hydroxide. )
1 answer:
Answer:
pH = 5.54
Explanation:
The pH of a buffer solution is given by the <em>Henderson-Hasselbach (H-H) equation</em>:
- pH = pKa + log
![\frac{[CH_3COO^-]}{[CH_3COOH]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BCH_3COO%5E-%5D%7D%7B%5BCH_3COOH%5D%7D)
For acetic acid, pKa = 4.75.
We <u>calculate the original number of moles for acetic acid and acetate</u>, using the <em>given concentrations and volume</em>:
- CH₃COO⁻ ⇒ 0.377 M * 0.250 L = 0.0942 mol CH₃COO⁻
- CH₃COOH ⇒ 0.345 M * 0.250 L = 0.0862 mol CH₃COOH
The number of CH₃COO⁻ moles will increase with the added moles of KOH while the number of CH₃COOH moles will decrease by the same amount.
Now we use the H-H equation to <u>calculate the new pH</u>, by using the <em>new concentrations</em>:
- pH = 4.75 + log
= 5.54
You might be interested in
The charge would be -2 because there are 2 more electrons than protons, and electrons have a negative charge.
Hey there,
Your answer would be
Coefficients are placed in front of the reactants and/or products
Hope this helps,
<h2>- <em>Mr. Helpful</em></h2>
The answer to this problem is quite simple, it’s 9
Answer:
Explanation:
has a pH of 6.6, then what is the H3O+ in solution X? View Answer · What is the pOH of a solution in which (H+)