Answer:
ΔG = - 442.5 KJ/mol
Explanation:
Data Given
delta H = -472 kJ/mol
delta S = -108 J/mol K
So,
delta S = -0.108 J/mol K
delta Gº = ?
Solution:
The answer will be calculated by the following equation for the Gibbs free energy
G = H - TS
Where
G = Gibbs free energy
H = enthalpy of a system (heat
T = temperature
S = entropy
So the change in the Gibbs free energy at constant temperature can be written as
ΔG = ΔH - TΔS . . . . . . (1)
Where
ΔG = Change in Gibb’s free energy
ΔH = Change in enthalpy of a system
ΔS = Change in entropy
if system have standard temperature then
T = 273.15 K
Now,
put values in equation 1
ΔG = (-472 kJ/mol) - 273.15 K (-0.108 KJ/mol K)
ΔG = (-472 kJ/mol) - (-29.5 KJ/mol)
ΔG = -472 kJ/mol + 29.5 KJ/mol
ΔG = - 442.5 KJ/mol
Reconstitution is the act of adding fluid such as distilled water to a powdered or crystalline form.
Additionally, medications are frequently provided in dry form, such as powders or crystals, which must be reconstituted with liquid before being injected parenterally. To create a specified liquid concentration, a dry ingredient is reconstituted by adding a liquid diluent. To ensure that the drug is reconstituted in the exact concentration, it is crucial to carefully follow the reconstitution instructions. The quantity of fluid used to dilute the drug must also be taken into account when determining the dosage of reconstituted medication to provide to the patient.
Learn more about Reconstitution here-
brainly.com/question/791594
#SPJ4
A. Real gases may be expected to deviate from Charles's law at high pressures.
C. Real gases may be expected to deviate from Charles's law near the liquefaction temperature.
Answer:
1. Exothermic 2. Exothermic 3. Endothermic 4. Endothermic 5. Exothermic.
Explanation:
1. An A-A and a C-C bond results in 2 A-C bonds which are lower than the A-A and C-C bonds so this reaction is exothermic.
2. A B-B bond and a C-C bond results in 2 B-C bonds which are lower than the first 2 bonds so this reaction is also exothermic.
3. There is no bond for single A, a single B-C bond results in a A-B bond and a C molecule. A-B bond is stronger than the B-C bond so the reaction absorbed energy along the way. This shows that it is endothermic.
4. An A-A bond and a B-B bond results in 2 A-B bonds which are stronger than the first two bonds so this reaction is also endothermic.
5. An A-B bond and a C molecule result in an A-C bond and a B molecule. A-C bond is weaker than the A-B bond so there is energy released. This reaction is exothermic.
I hope this answer helps.