Answer:
V = 3.1 L
Explanation:
Given data:
Molarity of solution = 0.37 M
Mass of LiF = 29.53 g
Volume of solution = ?
Solution:
Number of moles of LiF:
Number of moles = mass/molar mass
Number of moles = 29.53 g/ 25.94g/mol
Number of moles = 1.14 mol
Volume:
Molarity = number of moles of solute / Volume in L
0.37 M = 1.14 mol / V
V = 1.14 mol / 0.37 M
V = 3.1 L (M = mol/L)
I think the best answer that will describe chemical change is the first option. During a chemical change, b<span>oth the identity and the properties of a substance change because new substances are being formed by a chemical reaction. An example is rusting of steel</span>
Answer : The reaction is endothermic.
Explanation :
Formula used :

where,
= change in temperature = 
Q = heat involved in the dissolution of KCl = ?
m = mass = 0.500 + 50.0 = 50.5 g
c = specific heat of resulting solution = 
Now put all the given value in the above formula, we get:


The heat involved in the dissolution of KCl is positive that means as the change in temperature decreases then the reaction is endothermic and as the change in temperature increases then the reaction is exothermic.
Hence, the reaction is endothermic.
The word elliptical refers to an Oval.
Answer:
Explanation:
This type of experiment was carried out in 1960s on rodents, it was partially successful but was perceived impractical and dangerous for humans,it is possible theoretically.
Oxygen is broken down or dissolves in a thin film of fluid in the alveoli, surprisingly in normal breathing liquid composed of dissolved oxygen is involved. Evidently respiratory gas must be able to dissolve in this liquid and in concentration required to keep the partial pressure necessary to power diffusion.