Given that 1 mole contains 6.02x10^23 molecules, 3.0x10^23 is just around half a mole. Then we check the number of moles for each choice:
A. This is approximately half a mole, since the molar mass of Br2 is 159.8 g/mol.
B. He has a molar mass around 4 g/mol, so this is 1 mole.
C. H2 has a molar mass of 2.02 g/mol, so this is 2 moles.
D. Li has a molar mass of around 6.97 g/mol, so this is around 2 moles.
Therefore the only choice that fits is A. 80 g of Br2.
i think its MIDDLE FINGERS UP IN THE SKY AND AT THESE AHOLE MODERATORS
The Ninhydrin test is not effective to detect high molecular weight proteins as the steric hindrance limits the ninhydrin from reaching the α-amino groups.
Answer:
Bohrium (Niels Bohr)
Curium (Marie and Pierre Curie)
Einsteinium (Albert Einstein
Answer:
B
Explanation:
Molarity = 0.010M
Volume = 2.5L
Applying mole-concept,
0.010mole = 1L
X mole = 2.5L
X = (0.010 × 2.5) / 1
X = 0.025moles
0.025moles is present in 2.5L of NaOH solution.
Molar mass of NaOH = (23 + 16 + 1) = 40g/mol
Number of moles = mass / molar mass
Mass = number of moles × molar mass
Mass = 0.025 × 40
Mass = 1g
1g is present in 2.5L of NaOH solution