Answer: The new volume is 53.3 ml
Explanation:
The combined gas equation is,
where,
= initial pressure of gas = 50.0 kPa
= final pressure of gas = 80.0 kPa
= initial volume of gas = 80.0 ml
= final volume of gas = ?
= initial temperature of gas =
= final temperature of gas =
Now put all the given values in the above equation, we get:
The new volume is 53.3 ml
Answer
MnO₄ + 2H⁺ +3NO₂⁻ →3NO₃⁻ + Mn²⁺ +H₂O
Explanation
This is a redox reaction (oxidation-reduction reaction) which involves the transfer of electrons between two species. i.e
Mn + 6e⁻→Mn²⁺ (reduction)
3N³⁺- 6e⁻→3Mn⁵⁺(oxidation)
Answer:
ai) Rate law, ![Rate = k [CH_3 Cl] [Cl_2]^{0.5}](https://tex.z-dn.net/?f=Rate%20%3D%20k%20%5BCH_3%20Cl%5D%20%5BCl_2%5D%5E%7B0.5%7D)
aii) Rate constant, k = 1.25
b) Overall order of reaction = 1.5
Explanation:
Equation of Reaction:

If
, the rate of backward reaction is given by:
![Rate = k [A]^{a} [B]^{b}\\k = \frac{Rate}{ [A]^{a} [B]^{b}}\\k = \frac{Rate}{ [CH_3 Cl]^{a} [Cl_2]^{b}}](https://tex.z-dn.net/?f=Rate%20%3D%20k%20%5BA%5D%5E%7Ba%7D%20%5BB%5D%5E%7Bb%7D%5C%5Ck%20%3D%20%5Cfrac%7BRate%7D%7B%20%5BA%5D%5E%7Ba%7D%20%5BB%5D%5E%7Bb%7D%7D%5C%5Ck%20%3D%20%5Cfrac%7BRate%7D%7B%20%5BCH_3%20Cl%5D%5E%7Ba%7D%20%5BCl_2%5D%5E%7Bb%7D%7D)
k is constant for all the stages
Using the information provided in lines 1 and 2 of the table:
![0.014 / [0.05]^a [0.05]^b = 00.029/ [0.100]^a [0.05]^b\\0.014 / [0.05]^a [0.05]^b = 00.029/ [2*0.05]^a [0.05]^b\\0.014 / = 0.029/ 2^a\\2^a = 2.07\\a = 1](https://tex.z-dn.net/?f=0.014%20%2F%20%5B0.05%5D%5Ea%20%5B0.05%5D%5Eb%20%3D%2000.029%2F%20%5B0.100%5D%5Ea%20%5B0.05%5D%5Eb%5C%5C0.014%20%2F%20%5B0.05%5D%5Ea%20%5B0.05%5D%5Eb%20%3D%2000.029%2F%20%5B2%2A0.05%5D%5Ea%20%5B0.05%5D%5Eb%5C%5C0.014%20%2F%20%3D%200.029%2F%202%5Ea%5C%5C2%5Ea%20%3D%202.07%5C%5Ca%20%3D%201)
Using the information provided in lines 3 and 4 of the table and insering the value of a:
![0.041 / [0.100]^a [0.100]^b = 0.115 / [0.200]^a [0.200]^b\\0.041 / [0.100]^a [0.100]^b = 0.115 / [2 * 0.100]^a [2 * 0.100]^b\\](https://tex.z-dn.net/?f=0.041%20%2F%20%5B0.100%5D%5Ea%20%5B0.100%5D%5Eb%20%3D%200.115%20%2F%20%5B0.200%5D%5Ea%20%5B0.200%5D%5Eb%5C%5C0.041%20%2F%20%5B0.100%5D%5Ea%20%5B0.100%5D%5Eb%20%3D%200.115%20%2F%20%5B2%20%2A%200.100%5D%5Ea%20%5B2%20%2A%200.100%5D%5Eb%5C%5C)
![0.041 = 0.115 / [2 ]^a [2]^b\\ \[[2 ]^a [2]^b = 0.115/0.041\\ \[[2 ]^a [2]^b = 2.80\\\[[2 ]^1 [2]^b = 2.80\\\[[2]^b = 1.40\\b = \frac{ln 1.4}{ln 2} \\b = 0.5](https://tex.z-dn.net/?f=0.041%20%3D%200.115%20%2F%20%5B2%20%5D%5Ea%20%5B2%5D%5Eb%5C%5C%20%5C%5B%5B2%20%5D%5Ea%20%5B2%5D%5Eb%20%3D%200.115%2F0.041%5C%5C%20%5C%5B%5B2%20%5D%5Ea%20%5B2%5D%5Eb%20%3D%202.80%5C%5C%5C%5B%5B2%20%5D%5E1%20%5B2%5D%5Eb%20%3D%202.80%5C%5C%5C%5B%5B2%5D%5Eb%20%3D%201.40%5C%5Cb%20%3D%20%5Cfrac%7Bln%201.4%7D%7Bln%202%7D%20%5C%5Cb%20%3D%200.5)
The rate law is: ![Rate = k [CH_3 Cl] [Cl_2]^{0.5}](https://tex.z-dn.net/?f=Rate%20%3D%20k%20%5BCH_3%20Cl%5D%20%5BCl_2%5D%5E%7B0.5%7D)
The rate constant
then becomes:
![k = 0.014 / ( [0.050] [0.050]^(0.5) )\\k = 1.25](https://tex.z-dn.net/?f=k%20%3D%200.014%20%2F%20%28%20%5B0.050%5D%20%5B0.050%5D%5E%280.5%29%20%29%5C%5Ck%20%3D%201.25)
b) Overall order of reaction = a + b
Overall order of reaction = 1 + 0.5
Overall order of reaction = 1.5
Answer / explanation:
How does concentration affect boiling point of a solvent?
The amount by which the boiling point is raised is directly dependent on the concentration of the solute.
The higher the concentration of a solute, the more it is said to be difficult for the solvent molecules to escape into the gas phase.
However, when a non volatile amount of substance is dissolved in a given solvent, the boiling point of the given solvent increases.
The higher the concentration, the more higher the boiling point of a solvent.
It requires a higher temperature for enough solvent molecules to escape , this the boiling point is raised elevatedly
<u>Answer:</u> The
for the reaction is -1406.8 kJ.
<u>Explanation:</u>
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
According to this law, the chemical equation is treated as ordinary algebraic expressions and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is equal to the sum of the enthalpy changes of the intermediate reactions.
The chemical reaction for the formation reaction of
is:

The intermediate balanced chemical reaction are:
(1)
( × 6)
(2)
( × 3)
(3)
( × 2)
(4)

The expression for enthalpy of formation of
is,
![\Delta H^o_{formation}=[6\times \Delta H_1]+[3\times \Delta H_2]+[2\times \Delta H_3]+[1\times \Delta H_4]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Bformation%7D%3D%5B6%5Ctimes%20%5CDelta%20H_1%5D%2B%5B3%5Ctimes%20%5CDelta%20H_2%5D%2B%5B2%5Ctimes%20%5CDelta%20H_3%5D%2B%5B1%5Ctimes%20%5CDelta%20H_4%5D)
Putting values in above equation, we get:
![\Delta H^o_{formation}=[(-74.8\times 6)+(-185\times 3)+(323\times 2)+(-1049\times 1)]=-1406.8kJ](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Bformation%7D%3D%5B%28-74.8%5Ctimes%206%29%2B%28-185%5Ctimes%203%29%2B%28323%5Ctimes%202%29%2B%28-1049%5Ctimes%201%29%5D%3D-1406.8kJ)
Hence, the
for the reaction is -1406.8 kJ.