V(NaOH)=15 mL =0.015 L
C(NaOH)=0.1 mol/L
C(H₂SO₄)=0.05 mol/L
2NaOH + H₂SO₄ = Na₂SO₄ + 2H₂O
n(NaOH)=V(NaOH)C(NaOH)=2n(H₂SO₄)
n(H₂SO₄)=V(H₂SO₄)C(H₂SO₄)
V(NaOH)C(NaOH)=2V(H₂SO₄)C(H₂SO₄)
V(H₂SO₄)=V(NaOH)C(NaOH)/{2C(H₂SO₄)}
V(H₂SO₄)=0.015*0.1/{2*0.05}=0.015 L = 15 mL
Okay so because of the difference in density a simple method for telling the difference between the two is to put a sample in a container with oil, because water has a higher density than the oil it would sink to the bottom but alcohol on the other hand is lighter than oil and would float on top of the oil.
However with this question I think that what you would do is use the ice to find out what the substance is, it would float on top of the liquid if it were water because the water is denser than ice but the ice would sink if it was alcohol because the alcohol is less dense than ice.
I hope this helps you, good luck : )
It defines the element. If you change the protons, you change the type of element. A proton is positively charged and is most of the mass of the atom, next to the neutron. Neutrons have a very very very slightly higher mass.
Answer:
The fraction of water body necessary to keep the temperature constant is 0,0051.
Explanation:
Heat:
Q= heat (unknown)
m= mass (unknown)
Ce= especific heat (1 cal/g*°C)
ΔT= variation of temperature (2.75 °C)
Latent heat:
ΔE= latent heat
m= mass (unknown)
∝= mass fraction (unknown)
ΔHvap= enthalpy of vaporization (539.4 cal/g)
Since Q and E are equal, we can match both equations:

Mass fraction is:


∝=0,0051