<h3>
Answer:</h3>
The total concentration of ions in a 0.75 M solution of HCl is 1.5 M
That is; 0.75 M H⁺ and 0.75 M Cl⁻
<h3>
Explanation:</h3>
- Concentration or molarity is the number of moles of a compound or an ion contained in one liter of solution. It is measured in moles per liter (M).
- The concentration of ions making a compound is determined by the ratio of moles of the compound and the constituents ions.
- For instance, HCl dissociates to give H⁺ and Cl⁻
HCl(aq) → H⁺(aq) + Cl⁻(aq)
- Therefore, since the mole ratio between HCl and the constituent ions H⁺ and Cl⁻ is 1:1, then 0.75 M of HCl dissociates to give 0.75 M H⁺ and 0.75 m Cl⁻
- Hence the total concentration of ions in a 0.75 M solution of HCl is 1.5 M (0.75 M H⁺ and 0.75 M Cl⁻)
Answer:
Its because non-metals are unable to break the bond between the H and O ion and cannot reduce hydrogen by donating electrons
The ionization energy for a hydrogen atom in the n = 2 state is 328 kJ·mol⁻¹.
The <em>first ionization energy</em> of hydrogen is 1312.0 kJ·mol⁻¹.
Thus, H atoms in the <em>n</em> = 1 state have an energy of -1312.0 kJ·mol⁻¹ and an energy of 0 when <em>n</em> = ∞.
According to Bohr, Eₙ = k/<em>n</em>².
If <em>n</em> = 1, E₁= k/1² = k = -1312.0 kJ·mol⁻¹.
If <em>n</em> = 2, E₂ = k/2² = k/4 = (-1312.0 kJ·mol⁻¹)/4 = -328 kJ·mol⁻¹
∴ The ionization energy from <em>n</em> = 2 is 328 kJ·mol⁻¹
.
It is fresher because of new transportation techniques and refrigerated trailers.