Using coupons seems like an old-fashioned, time-consuming way to save a few cents on the products you buy at the grocery store. After all, most coupons don't usually have a face value of more than $1 and, quite often, they're worth far less. But done properly, couponing can save you thousands of dollars every year.
Answer: (3) The difference in electronegativity between carbon and oxygen is greater than that between fluorine and oxygen.
Explanation: Polarity of a molecule is due to the difference in electronegativity of the atoms. More is the electronegativity difference, more is the polarity.
Electronegativity of carbon = 2.5
Electronegativity of oxygen = 3.5
Electronegativity of fluorine = 4.0
Thus the difference in electronegativity of carbon and oxygen is=(3.5-2.5)= 1.0
Thus the difference in electronegativity of fluorine and oxygen is=(4.0-3.5)= 0.5.
Thus C-O bond is more polar than F-O bond.
The answer is c i need brainlyest plz
Answer:
- <u>Tellurium (Te) and iodine (I) are two elements </u><em><u>next to each other that have decreasing atomic masses.</u></em>
Explanation:
The <em>atomic mass</em> of tellurium (Te) is 127.60 g/mol and the atomic mass of iodine (I) is 126.904 g/mol; so, in spite of iodine being to the right of tellurium in the periodic table (because the atomic number of iodine is bigger than the atomic number of tellurium), the atomic mass of iodine is less than the atomic mass of tellurium.
The elements are arranged in increasing order of atomic number in the periodic table.
The atomic number is equal to the number of protons and the mass number is the sum of the protons and neutrons.
The mass number, except for the mass defect, represents the atomic mass of a particular isotope. But the atomic mass of an element is the weighted average of the atomic masses of the different natural isotopes of the element.
Normally, as the atomic number increases, you find that the atomic mass increases, so most of the elements in the periodic table, which as said are arranged in icreasing atomic number order, match with increasing atomic masses. But the relative isotope abundaces of the elements can change that.
It is the case that the most common isotopes of tellurium have atomic masses 128 amu and 130 amu, whilst most common isotopes of iodine have an atomic mass 127 amu. As result, tellurium has an average atomic mass of 127.60 g/mol whilst iodine has an average atomic mass of 126.904 g/mol.