The answer is potassium. It would be 4, and for neon would be 2. Just total which row of the periodic table you are on. The "L" tells you whether the highest-energy electron is in an "s" orbital (L=0) or a "p" orbital (L=1) or a "d" orbital (L=2) or an "f" orbital (L=3). The way in which these orbitals are filled is: for each of the first three rows (up to argon), two electrons in the "s" orbital are filled first, then 6 electrons in the "p"orbitals. The row where the potassium also starts with filling the "s" orbital at the new "n" level (4) but then goes back to satisfying up the "d" orbitals of n=3 before it seals up the "p"s for n=4.
Average atomic mass = .374 ( 184.953 amu ) + .626 ( 186.958 amu ) =
186.207 amu
Hope this helps x
would love to have brainliest if it is right! :)
10H₂ + 5O₂ → 10H₂O
Explanation:
This problem deals with balancing of chemical equations. In balancing chemical equations, the law of conservation of mass must be followed. This states that:
"In a chemical reaction, matter is neither created nor destroyed but transformed from one form to another".
This meaning of this is that; the number of atoms on each side of the expression must be the same.
2H₂ + O₂ → 2H₂O
let us check is the equation above is balanced;
2H₂ + O₂ → 2H₂O
Elements reactant product
H 4 4
O 2 2
We can see vividly that the equation is balanced;
Now; if we have 5 oxygen gas, we multiply the equation through by 5:
5 x ( 2H₂ + O₂ → 2H₂O )
⇒ 10H₂ + 5O₂ → 10H₂O
Elements reactant product
H 20 20
O 10 10
learn more:
Balanced equation brainly.com/question/11102790
#learnwithBrainly
1.Start with the number of grams of each element, given in the problem.
2.Convert the mass of each element to moles using the molar mass from the periodic table.
3.Divide each mole value by the smallest number of moles calculated.
4.Round to the nearest whole number. This is the mole ratio of the elements and is.