Study your experiment setup.<span> In 30 minutes, how will the air temperature in the bottles compare?</span><span> What do you predict will happen to the ice in each bottle?</span>
Answer:
C
Explanation:
You mix different thing together to make a new thing.
B)a force pushed the rock layers after they were formed
Answer : The correct answer for a) 4-bromo-2-iodo-4-methyl pentane and b)5-bromo-2-ethoxy-2-methyl pentane.
A) Reaction with NaI :
Reaction of alkyl halide with NaI is known as Finkelstein Reaction . The acetone is used as solvent . It involves bimolecular nucleophillic substitution rmechanism (SN²) . There is replecement of one halogen with other occurs .
The incoming Nucleophile(Nu⁻) (halide) attacks on carbon from back side , while the leaving group (halide) leaves the compound from front side , simultaneously. The product so formed have is inverted .(Image)
NaI releases I⁻ ion which act as nucelophile and attacks on C1 carbon and Br⁻ from C1 carbon is released . Out of two bromines at C1 and C4 carbons , C1 is primary carbon which is less sterically hindered while C-4 is tertiary carbon and sterically hindered . So it is easy for incoming Nu⁻ to attack on C1 carbon .So Br⁻ is repleaced by I⁻.
1,4-dibromo-4-methylpentane + NaI → 4-bromo-1-iodo-4-methylpentane
The product formed from reaction between 1,4-dibromo-4-methylpentane and NaI is 4-bromo-1-iodo-4-methylpentane . (Image)
B) Reaction with AgNO3 :
Reaction of alkyl halide with AgNO3 in ethanol takes place via SN¹ ( unimolecular nucleophilic substitution ) mechanism . In this leaving group(halide) leaves from alkyl halide forming an intermediate carbocation species . The incoming Nu⁻ attack on this carbocation.
AgNO3 reacts releases Ag⁺ion which abstract Br⁻ of C-4 carbon from 1,4-dibromo-4-methylpentane. THis forms tertiary carbocation which is more stable than carbocation formed by removal of Br from C-1 . The ethanol being more Nucleophilic than NO₃⁻ (from AgNO₃), attacks on this carbocation .(Image )
The product formed as a result is 5-bromo-2-ethoxy-2-methyl pentane.
The moles can be defined as the mass of the substance with respect to molar mass. The moles of potassium nitrate is 1 mol.
<h3>How to calculate moles of a substance?</h3>
The moles of a compound can be calculated from:

The molarity can be defined as the moles of solute in a liter of solution.
The molarity can be expressed as:

The molarity of potassium nitrate solution is 2 M, and the volume is 500 mL.
The moles of potassium nitrate is given as:

The moles of potassium nitrate in 2 M, 500 mL solution are 1 mol.
Learn more about moles, here:
brainly.com/question/15209553