Initial volume of the gas (V1) = 10 inches^3
Initial pressure (P1) = 5 psi
Final pressure after compression of the gas (P1) = 10 psi
Let us assume the final volume of the gas (V2) = x
According to Boyle's Gas law, the pressure and volume of a gas remains constant under ideal condition. Then
P1V1= P2V2
5 * 10 = 10 * x
50 = 10x
x = 50/10
= 5 cubic inches
So the volume of the gas after it was compressed was 5 cubic inches. I hope the procedure is clear enough for you to understand.
Answer:The Atwood Machine is a device that demonstrates the basic principles of acceleration and dynamics. You'll mostly see Atwood machines in Physics laboratories and classrooms. It consists of two objects with different masses that hang vertically from a frictionless pulley that has a very small, negligible mass.
Explanation:
Water evaporates at 100⁰C
So change in temperature = 100-20 = 80⁰C
Amount of water to be evaporated = 1 liter = 1L*1kg/liter = 1 kg
Specific heat of water is 1 calorie/gram ⁰C = 4.186 joule/gram =4186 J/kg
So heat required E = mcΔT = 1 * 4186 *80= 334880 J =334.88 kJ
So amount of heat require to evaporate water = 334.88 kJ
Answer:
X: Always attractive
Y: Infinite range
Z: Attractive or repulsive
ANSWER IS C