Answer:
That an item is neither moving nor staying still in a position that is building up energy.
Explanation:
The best and most correct answer among the choices provided by your question is the second choice or letter B.
The researchers’ conclusion was not justified because t<span>he control group was not treated the same as the experimental group.</span>
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
1<span>Define the equation for the force of gravity that attracts an object, <span>Fgrav = (Gm1m2)/d2</span>
2. </span>Use the proper metric units.
3. Determine the mass of the object in question.
4. <span>Measure the distance between the two objects
5. </span><span>Solve the equation
</span>
Answer:
x=4.06m
Explanation:
A body that moves with constant acceleration means that it moves in "a uniformly accelerated movement", which means that if the velocity is plotted with respect to time we will find a line and its slope will be the value of the acceleration, it determines how much it changes the speed with respect to time.
When performing a mathematical demonstration, it is found that the equations that define this movement are as follows.
Vf=Vo+a.t (1)\\\\
{Vf^{2}-Vo^2}/{2.a} =X(2)\\\\
X=Xo+ VoT+0.5at^{2} (3)\\
Where
Vf = final speed
Vo = Initial speed
T = time
A = acceleration
X = displacement
In conclusion to solve any problem related to a body that moves with constant acceleration we use the 3 above equations and use algebra to solve
for this problem
Vf=7.6m/s
t=1.07
Vo=0
we can use the ecuation number one to find the acceleration
a=(Vf-Vo)/t
a=(7.6-0)/1.07=7.1m/s^2
then we can use the ecuation number 2 to find the distance
{Vf^{2}-Vo^2}/{2.a} =X
(7.6^2-0^2)/(2x7.1)=4.06m