Answer: Option D: 5.5×10²Joules
Explanation:
Work done is the product of applied force and displacement of the object in the direction of force.
W = F.s = F s cosθ
It is given that the force applied is, F = 55 N
The displacement in the direction of force, s = 10 m
The angle between force and displacement, θ = 0°
Thus, work done on the object:
W = 55 N × 10 m × cos 0° = 550 J = 5.5 × 10² J
Hence, the correct option is D.
Answer:
2.69 m/s
Explanation:
Hi!
First lets find the position of the train as a function of time as seen by the passenger when he arrives to the train station. For this state, the train is at a position x0 given by:
x0 = (1/2)(0.42m/s^2)*(6.4s)^2 = 8.6016 m
So, the position as a function of time is:
xT(t)=(1/2)(0.42m/s^2)t^2 + x0 = (1/2)(0.42m/s^2)t^2 + 8.6016 m
Now, if the passanger is moving at a constant velocity of V, his position as a fucntion of time is given by:
xP(t)=V*t
In order for the passenger to catch the train
xP(t)=xT(t)
(1/2)(0.42m/s^2)t^2 + 8.6016 m = V*t
To solve this equation for t we make use of the quadratic formula, which has real solutions whenever its determinat is grater than zero:
0≤ b^2-4*a*c = V^2 - 4 * ((1/2)(0.42m/s^2)) * 8.6016 m =V^2 - 7.22534(m/s)^2
This equation give us the minimum velocity the passenger must have in order to catch the train:
V^2 - 7.22534(m/s)^2 = 0
V^2 = 7.22534(m/s)^2
V = 2.6879 m/s
Answer: The focal length of the cornea-lens system in his eye must be LESS THAN the distance between the front and back of his eye.
Explanation:
The human eye the front part of the eye is the CORNEA. This is the tough white transparent part of the eye that helps in the refraction of light rays. While the backside of the eye is the RETINA. This is the part of the eye when images are focused.
When a normal eye is at rest, parallel rays from a distant object are focused on the retina. The ability of the eye - lens to focus points at different distances on the retina is known as accomodation. The adjustment of the eye lens to focus objects of varying distances is brought about by the ciliary muscles. The have the ability to change the shape of the eye which leads to change in focal length.
When a person with normal vision looks at a distant object at infinity, the lens brings parallel rays to focus on the retina. Thus, the furthest point which the eye can see distinctly is called the far point of the eye and it's infinity for a normal eye. But Joe was able to focus his eye on the tree, meaning that the tree was within his near point. This is the nearest point at which an object is clearly seen. Therefore, when the effective focal length of the cornea-lens system changes, it changes the location of the image of any object in one's field of view.
Answer:
e) indicated that the speed of light is the same in all inertial reference frames.
Explanation:
In 18th century, many scientists believed that the light just like air and water needs a medium to travel. They called this medium <em>aether</em>. They believed that even the space is not empty and filled with aether.
Michelson and Morley tried to prove the presence and speed of this aether through an interference experiment in 1887. They made an interferometer in which light was emitted at various angles with respect to the supposed aether. Both along the flow and against the flow to see the difference in the speed of light. But they did not find no major difference and thus it became the first proof to disprove the theory of aether.
It thus proved that the speed of light remains same in all inertial frames.
Also, it became a base for the special theory of relativity by Einstein.