Answer:
A) sample mean = $1.36 million
B) standard deviation = $0.9189 million
C) confidence interval = ($1.93 million , $0.79 million)
*since the sample size is very small, the confidence interval is not valid.
Step-by-step explanation:
samples:
- $2.7 million
- $2.4 million
- $2.2 million
- $2 million
- $1.5 million
- $1.5 million
- $0.5 million
- $0.5 million
- $0.2 million
- $0.1 million
sample mean = $1.36 million
the standard deviation:
- $2.7 million - $1.36 million = 1.34² = 1.7956
- $2.4 million - $1.36 million = 1.04² = 1.0816
- $2.2 million - $1.36 million = 0.84² = 0.7056
- $2 million - $1.36 million = 0.64² = 0.4096
- $1.5 million - $1.36 million = 0.14² = 0.0196
- $1.5 million - $1.36 million = 0.14² = 0.0196
- $0.5 million - $1.36 million = -0.86² = 0.7396
- $0.5 million - $1.36 million = -0.86² = 0.7396
- $0.2 million - $1.36 million = -1.16² = 1.3456
- $0.1 million - $1.36 million = -1.26² = 1.5876
- total $8.444 million / 10 = $0.8444 million
standard deviation = √0.8444 = 0.9189
95% confidence interval = mean +/- 1.96 standard deviations/√n:
$1.36 million + [(1.96 x $0.9189 million)/√10] = $1.36 million + $0.57 million = $1.93 million
$1.36 million - $0.57 million = $0.79 million
Find the total minutes:
15 + 30 + 25 + 35 = 105 minutes
This is equal to 1 hour and 45 minutes
Subtract 1 hour and 45 minutes from 9:30
She woke up at 7:45 am
Answer:
the answer is 3725
Step-by-step explanation:
first you calculate the 3rd side of the triangle by phytagores method and you've got the area of thre triangle
B.1/6
i think that's the answer <span />
Answer:
15°
Step-by-step explanation:
Since P is on the median of ΔABC, it is equidistant from points B and C as well as from C and Q. Thus, points B, C, and Q all lie on a circle centered at P. (See the attached diagram.)
The base angles (B and C) of triangle ABC are (180° -30°)/2 = 75°. This means arc QC of the circle centered at P has measure 150°. The diameter of circle P that includes point Q is defined to intersect circle P at R.
Central angle RPC is the difference between arcs QR and QC, so is 180° -150° = 30°. Inscribed angle RQC has half that measure, so is 15°. Angle PQC has the same measure as angle RQC, so is 15°.
Angle PQC is 15°.