1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Debora [2.8K]
3 years ago
8

A bottle lying on the windowsill falls off and takes 4.95 seconds to reach the ground. The distance from the windowsill to the g

round is 120.00 meters. Find the time the bottle would take to land if it were to fall the same distance on the moon instead of Earth. (Note: Acceleration due to gravity on the moon is 1/6 that on Earth.)
Physics
1 answer:
Liula [17]3 years ago
5 0
The distance an object falls from rest through gravity is 
                        D  =  (1/2) (g) (t²) 
           Distance  =  (1/2 acceleration of gravity) x (square of the falling time)

We want to see how the time will be affected 
if  ' D ' doesn't change but ' g ' does. 
So I'm going to start by rearranging the equation
to solve for ' t '.                                                      D  =  (1/2) (g) (t²)

Multiply each side by  2 :         2 D  =            g    t²  

Divide each side by ' g ' :      2 D/g =                  t² 

Square root each side:        t = √ (2D/g)

Looking at the equation now, we can see what happens to ' t ' when only ' g ' changes:

  -- ' g ' is in the denominator; so bigger 'g' ==> shorter 't'

                                             and smaller 'g' ==> longer 't' .-- 

They don't change by the same factor, because  1/g  is inside the square root.  So 't' changes the same amount as  √1/g  does.

Gravity on the surface of the moon is roughly  1/6  the value of gravity on the surface of the Earth.

So we expect ' t ' to increase by  √6  =  2.45 times.

It would take the same bottle  (2.45 x 4.95) = 12.12 seconds to roll off the same window sill and fall 120 meters down to the surface of the Moon.
You might be interested in
Select the correct answer.
aksik [14]
I don’t understand it I
4 0
3 years ago
Why do high-altitude clouds tend to appear before a warm front arrives in a region?
Ilia_Sergeevich [38]

Answer:

Global Warming

Explanation:

That's why

8 0
2 years ago
Read 2 more answers
Two insulated copper wires of similar overall diameter have very different interiors. One wire possesses a solid core of copper,
Marrrta [24]

Answer:

a

 Solid Wire     I  =   0.01237 \  A      

  Stranded  Wire  I_2  =   0.00978 \  A

b

  Solid Wire   R  = 0.0149 \ \Omega

   Stranded  Wire  R_1  = 0.0189 \ \Omega

Explanation:

Considering the first question

From the question we are told that

  The  radius of the first wire is  r_1  = 1.53 mm = 0.0015 \  m

  The radius of  each strand is  r_0 =  0.306 \ mm =  0.000306 \ m

  The current density in both wires is  J  =  1750 \  A/m^2

Considering the first wire

     The  cross-sectional area of the first wire is

      A   = \pi  r^2

= >  A   = 3.142 *  (0.0015)^2

= >  A   = 7.0695 *10^{-6} \  m^2

Generally the current in the first wire is    

     I  =  J*A

=>  I  =  1750*7.0695 *10^{-6}

=>  I  =   0.01237 \  A

Considering the second wire  wire

The  cross-sectional area of the second wire is

     A_1  =  19 *  \pi r^2

=>     A_1  =  19 *3.142 *  (0.000306)^2

=>  A_1  =  5.5899 *10^{-6} \  m^2

Generally the current is  

      I_2  =  J  *  A_1

=>    I_2  =   1750  *  5.5899 *10^{-6}

=>    I_2  =   0.00978 \  A

Considering question two  

 From the question we are told that

     Resistivity is  \rho  =  1.69* 10^{-8} \Omega \cdot m

     The  length of each wire  is  l =  6.25 \  m

Generally the resistance of the first wire is mathematically represented as

    R  =  \frac{\rho *  l  }{A}

=> R  =  \frac{  1.69* 10^{-8} * 6.25 }{ 7.0695 *10^{-6} }

=> R  = 0.0149 \ \Omega

Generally the resistance of the first wire is mathematically represented as

    R_1  =  \frac{\rho *  l  }{A_1}

=> R_1  =  \frac{  1.69* 10^{-8} * 6.25 }{5.5899 *10^{-6} }

=> R_1  = 0.0189 \ \Omega

3 0
3 years ago
In the design of wall and column forms, the two most important factors are which of the following? a. rate of placement of the c
Simora [160]

Answer:

c. length of the wall or column and the rate of placement of the concrete

Explanation:

when designing for wall and column form-works, it is of utmost important to know the length of the wall and the type of concrete placement to be used.

Concrete placement has methods and precaution to be taken when doing the  form work

if the concrete placement is manually (hand or funnel) the form work height should not be more than 1 m to enable easy compaction and vibration of concrete in the form.

Also, if the form work length is too long and it is not well reinforced, it tends to burg if the force apply during concrete placement or during vibration is much.  

5 0
3 years ago
Second<br>class lever short note​
seraphim [82]

Answer:

wow

Explanation:

6 0
3 years ago
Read 2 more answers
Other questions:
  • A car, initially traveling at 15 meters per second
    15·1 answer
  • Which information would be required to determine the mass number of nitrogen
    8·1 answer
  • Need help true or false ? ECON
    6·1 answer
  • A cyclist accelerates from 0 m/s [S] to be 15 m/s [S] in 4 s. What is his acceleration?
    8·1 answer
  • Baseball scouts often use a radar gun to measure the speed of a pitch. One particular model of radar gun emits a microwave signa
    5·1 answer
  • What is the energy of a photon whose frequency is 5.0x10^14 hz
    5·1 answer
  • Question 11(Multiple Choice Worth 3 points)
    12·1 answer
  • What would earth be like without the moon?
    8·2 answers
  • 3. Which of the following objects can be used to complete this broken electric circuit and make the light bulb glow?
    11·1 answer
  • A thin flexible gold chain of uniform linear density has a mass of 17.1 g. It hangs between two 30.0 cm long vertical sticks (ve
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!