1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Debora [2.8K]
3 years ago
8

A bottle lying on the windowsill falls off and takes 4.95 seconds to reach the ground. The distance from the windowsill to the g

round is 120.00 meters. Find the time the bottle would take to land if it were to fall the same distance on the moon instead of Earth. (Note: Acceleration due to gravity on the moon is 1/6 that on Earth.)
Physics
1 answer:
Liula [17]3 years ago
5 0
The distance an object falls from rest through gravity is 
                        D  =  (1/2) (g) (t²) 
           Distance  =  (1/2 acceleration of gravity) x (square of the falling time)

We want to see how the time will be affected 
if  ' D ' doesn't change but ' g ' does. 
So I'm going to start by rearranging the equation
to solve for ' t '.                                                      D  =  (1/2) (g) (t²)

Multiply each side by  2 :         2 D  =            g    t²  

Divide each side by ' g ' :      2 D/g =                  t² 

Square root each side:        t = √ (2D/g)

Looking at the equation now, we can see what happens to ' t ' when only ' g ' changes:

  -- ' g ' is in the denominator; so bigger 'g' ==> shorter 't'

                                             and smaller 'g' ==> longer 't' .-- 

They don't change by the same factor, because  1/g  is inside the square root.  So 't' changes the same amount as  √1/g  does.

Gravity on the surface of the moon is roughly  1/6  the value of gravity on the surface of the Earth.

So we expect ' t ' to increase by  √6  =  2.45 times.

It would take the same bottle  (2.45 x 4.95) = 12.12 seconds to roll off the same window sill and fall 120 meters down to the surface of the Moon.
You might be interested in
The platform height for Olympic divers is 10 m. A 60 kg diver steps off the platform to begin his dive.
azamat

Answer:

a) Ep = 5886[J]; b) v = 14[m/s]; c)   W = 5886[J]; d) F = 1763.4[N]

Explanation:

a)

The potential energy can be found using the following expression, we will take the ground level as the reference point where the potential energy is equal to zero.

E_{p} =m*g*h\\where:\\m = mass = 60[kg]\\g = gravity = 9.81[m/s^2]\\h = elevation = 10 [m]\\E_{p}=60*9.81*10\\E_{p}=5886[J]

b)

Since energy is conserved, that is, potential energy is transformed into kinetic energy, the moment the harpsichord touches water, all potential energy is transformed into kinetic energy.

E_{p} = E_{k} \\5886 =0.5*m*v^{2} \\v = \sqrt{\frac{5886}{0.5*60} }\\v = 14[m/s]

c)

The work is equal to

W = 5886 [J]

d)

We need to use the following equation and find the deceleration of the diver at the moment when he stops his velocity is zero.

v_{f} ^{2}= v_{o} ^{2}-2*a*d\\where:\\d = 2.5[m]\\v_{f}=0\\v_{o} =14[m/s]\\Therefore\\a = \frac{14^{2} }{2*2.5} \\a = 39.2[m/s^2]

By performing a sum of forces equal to the product of mass by acceleration (newton's second law), we can find the force that acts to reduce the speed of the diver to zero.

m*g - F = m*a

F = m*a - m*g

F = (60*39.2) - (60*9.81)

F = 1763.4 [N]

3 0
3 years ago
Which has more momentum, a heavy truck moving at 30 miles per hour or a light truck moving at 30 miles per hour?
valentina_108 [34]
A heavy truck moving a 30 mph. It has more mass.
7 0
3 years ago
Read 2 more answers
A 200 g hockey puck is launched up a metal ramp that is inclined at a 30° angle. The coefficients of static and kinetic friction
nikitadnepr [17]

Answer:

71.76 m

Explanation:

We will solve this question using the work energy theorem.

The theorem explains that, the change in kinetic energy of a particle between two points is equal to the workdone in moving the particle from the one point to the other.

ΔK.E = W

In the attached free body diagram for the question, the forces acting on the puck are given.

ΔK.E = (final kinetic energy) - (initial kinetic energy)

Final kinetic energy = 0 J (since the puck comes to a stop)

Initial kinetic energy = (1/2)(m)(v²) = (1/2)(0.2)(26²) = 67.6 J

ΔK.E = 0 - 67.6 = - 67.6 J

W = Workdone between the starting and stopping points = (work done by the force of gravity) + (work done by frictional force)

Work done by the force of gravity = - mgh = - (0.2)(9.8)(h) = - 1.96 h

Workdone by the frictional force = F × d

F = μ N

μ = coefficient of kinetic friction = 0.30 (kinetic frictional force is the only frictional force that moves a distance of d, the static frictional force doesn't move any distance, so it does no work)

N = normal reaction of the plane surface on the puck = mg cos 30° = (0.2)(9.8)(0.866) = 1.697 N

F = μ N = 0.3 × 1.697 = 0.509 N

where d = distance along the incline that the puck travels.

d = h/sin 30° = 2h (from trigonometric relations)

Workdone by the frictional force = F × d = 0.509 × 2h = 1.02 h

ΔK.E = W = (work done by the force of gravity) + (work done by frictional force)

- 67.6 = - 1.96h + 1.02h

-0.942h = - 67.6

h = 71.76 m

6 0
3 years ago
HELP ASAP 20PTS<br> .<br> .<br> .<br> .<br> .<br> .<br> .<br> .<br> .
never [62]

Answer:

Y and Z

Hop this helps :)

Explanation:

5 0
3 years ago
Using the information given in the problem introduction and assuming that the third driver is telling the truth, determine wheth
Thepotemich [5.8K]

Answer:

The speed of driver N is 22.1594 m/s

Explanation:

the solution is in the attached Word file

Download docx
8 0
3 years ago
Other questions:
  • Phases of the moon. Help!???????
    13·1 answer
  • ¿Existe relación entre la rapidez para realizar trabajo y la velocidad del cuerpo?
    10·1 answer
  • The wavelength idea of the wave-mechanical model refers to a) the wave nature of electrons b) the wave nature of protons c) the
    9·2 answers
  • A small radio transmitter broadcasts in a 48 mile radius. if you drive along a straight line from a city 61 miles north of the t
    10·1 answer
  • What is the net force on a bag pulled down by gravity with a force of 18 newtons and pulled upward by a rope with a force of 18
    8·1 answer
  • Explain the law of conservation of mass and how it applies to balancing chemical equations
    13·1 answer
  • A 6.7kg object moves with a velocity of 8m/s. What's its kinetic energy?
    14·1 answer
  • Imagine a system where a block rests on an inclined plane. The block is then given an initial push so that it starts sliding dow
    5·1 answer
  • If an object of mass 70kg falls from a height of 500 m, what is the maximum velocity of the object?
    14·1 answer
  • A grindstone increases in angular speed from 4.00 rad/s to 12.00rad/s in 4.00 s. Through what angle does it turn during that tim
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!