Answer:
Technician be says that diesel engines produce more power because they use excess air to burn feel who is correct
Explanation:
He is correct as many engines are run by diesel. It produces more power as that is how cars produce more power.
Answer:
I=9.6×e^{-8} A
Explanation:
The magnetic field inside the solenoid.
B=I*500*muy0/0.3=2.1×e ^-3×I.
so the total flux go through the square loop.
B×π×r^2=I×2.1×e^-3π×0.025^2
=4.11×e^-6×I
we have that
(flux)'= -U
so differentiating flux we get
so the inducted emf in the loop.
U=4.11×e^{-6}×dI/dt=4.11×e^-6×0.7=2.9×e^-6 (V)
so, I=2.9×e^{-6}÷30
I=9.6×e^{-8} A
Answer:
c. an initial condition specifies the temperature at the start of the problem and a boundary condition provides information about temperatures on the boundaries.
Explanation:
Conduction refers to the transfer of thermal energy or electric charge as a result of the movement of particles. When the conduction relates to electric charge, it is known as electrical conduction while when it relates to thermal energy, it is known as heat conduction.
In the process of heat conduction, thermal energy is usually transferred from fast moving particles to slow moving particles during the collision of these particles. Also, thermal energy is typically transferred between objects that has different degrees of temperature and materials (particles) that are directly in contact with each other but differ in their ability to accept or give up electrons.
Any material or object that allow the conduction (transfer) of electric charge or thermal energy is generally referred to as a conductor. Conductors include metal, steel, aluminum, copper, frying pan, pot, spoon etc.
Hence, the difference between an initial condition and a boundary condition for conduction in a solid is that an initial condition specifies the temperature at the start of the problem and a boundary condition provides information about temperatures on the boundaries.
Answer: double click at the top of the page. Or you can also go to home file and click add heading.
Explanation: