1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lorico [155]
3 years ago
15

Opposition to current flow, restricts or resists current flow

Engineering
1 answer:
BlackZzzverrR [31]3 years ago
8 0

Answer:

The answer is c-resistance

You might be interested in
_______ is a material property that pertains to local resistance to plastic deformation, such as scratching or denting. It is of
Readme [11.4K]

Answer: hardness

Explanation:

Hardness is a measure of a material's ability to resist plastic deformation. In other words, it is a measure of how resistant material is to denting or scratching. Diamond, for example, is a very hard material. It is extremely difficult to dent or scratch a diamond. In contrast, it is very easy to scratch or dent most plastics.

7 0
3 years ago
A silicon diode has a saturation current of 6 nA at 25 degrees Celcius. What is the saturation current at 100 degrees Celsius?
Illusion [34]

Answer:

0.0659 A

Explanation:

Given that :

I_{0}  =  6nA ( saturation current )

at 25°c = 300 k ( room temperature )

n = 2  for silicon diode

Determine the saturation current at 100 degrees = 373 k

Diode equation at room temperature = I = Io \frac{V}{e^{0.025*n} }

next we have to determine the value of V at 373 k

q / kT = (1.6 * 10^-19) / (1.38 * 10^-23 * 373) = 31.08 V^-1

Given that I is constant

Io = \frac{e^{0.025*2} }{31.08} =  0.0659 A

3 0
3 years ago
A sewage lagoon that has a surface area of 10 ha and a depth of 1 m is receiving 8,640 m^3 /d of sewage containing 100 mg/L of b
Marysya12 [62]

Answer: Coefficient= 0.35 per day

Explanation:

To find the bio degradation reaction rate coefficient, we have

k= \frac{(Cin)(Qin)-(Cout)(Qout)}{(Clagoon)V}

Here, the C lagoon= 20 mg/L

Q in= Q out= 8640 m³/d

C in= 100 mg/L

C out= 20 mg/L

V= 10 ha* 1* 10

V= 10⁵ m³

So, k= \frac{8640*100-8640*20}{20*10^5}

k= 0.35 per day

6 0
3 years ago
I WILL GIVE BRAINLIEST IF ANSWER FAST What is the measurement on this Dial Caliper?
garik1379 [7]

Answer:

b i think i dont see any dial caliper

Explanation:

8 0
3 years ago
A counter-flow double pipe heat exchanger is heat heat water from 20 degrees Celsius to 80 degrees Celsius at the rate of 1.2 kg
lakkis [162]

Answer:

L=107.6m

Explanation:

Cold water in: m_{c}=1.2kg/s, C_{c}=4.18kJ/kg\°C, T_{c,in}=20\°C, T_{c,out}=80\°C

Hot water in: m_{h}=2kg/s, C_{h}=4.18kJ/kg\°C, T_{h,in}=160\°C, T_{h,out}=?\°C

D=1.5cm=0.015m, U=649W/m^{2}K, LMTD=?\°C, A_{s}=?m^{2},L=?m

Step 1: Determine the rate of heat transfer in the heat exchanger

Q=m_{c}C_{c}(T_{c,out}-T_{c,in})

Q=1.2*4.18*(80-20)

Q=1.2*4.18*(80-20)

Q=300.96kW

Step 2: Determine outlet temperature of hot water

Q=m_{h}C_{h}(T_{h,in}-T_{h,out})

300.96=2*4.18*(160-T_{h,out})

T_{h,out}=124\°C

Step 3: Determine the Logarithmic Mean Temperature Difference (LMTD)

dT_{1}=T_{h,in}-T_{c,out}

dT_{1}=160-80

dT_{1}=80\°C

dT_{2}=T_{h,out}-T_{c,in}

dT_{2}=124-20

dT_{2}=104\°C

LMTD = \frac{dT_{2}-dT_{1}}{ln(\frac{dT_{2}}{dT_{1}})}

LMTD = \frac{104-80}{ln(\frac{104}{80})}

LMTD = \frac{24}{ln(1.3)}

LMTD = 91.48\°C

Step 4: Determine required surface area of heat exchanger

Q=UA_{s}LMTD

300.96*10^{3}=649*A_{s}*91.48

A_{s}=5.07m^{2}

Step 5: Determine length of heat exchanger

A_{s}=piDL

5.07=pi*0.015*L

L=107.57m

7 0
2 years ago
Other questions:
  • According to the zeroth law of thermodynamics, which of the following cannot occur?
    7·1 answer
  • 100 points Im so bored lol
    11·2 answers
  • Find the pressure exerted by the water bed on the floor when the bed rests in its normal position. Assume the entire lower surfa
    12·1 answer
  • What is an isentropic process?
    7·1 answer
  • Plot the following trig functions using subplots, choosing an appropriate layout for the number of functions displayed. The subp
    8·1 answer
  • A heat recovery device involves transferring energy from the hot flue gases passing through an annular region to pressurized wat
    6·1 answer
  • Technician A says that latent heat is hidden heat and cannot be measured on a thermometer. Technician B says that latent heat is
    12·1 answer
  • For a brass alloy, the following engineering stresses produce the corresponding plastic engineering strains prior to necking:
    9·1 answer
  • 4 main causes of erosion
    12·1 answer
  • What document should you have from the engine manufacturer when working on an engine
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!