1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lorico [155]
2 years ago
15

Opposition to current flow, restricts or resists current flow

Engineering
1 answer:
BlackZzzverrR [31]2 years ago
8 0

Answer:

The answer is c-resistance

You might be interested in
Most equipment is cooled by bringing cold air in the front and ducting the heat out of the back. What is the term for where the
vitfil [10]

Answer: Hot aisle

Explanation:

6 0
2 years ago
A commuter train traveling at 50 mi/h is 3 mi from a station. The train then decelerates so that its speed is 15 mi/h when it is
jonny [76]

Answer:

a) t = 277.477\,s\,(4.625\min), b) v_{f} = 0\,\frac{mi}{h}, c) a = -0.128\,\frac{ft}{s^{2}}

Explanation:

a) The deceleration experimented by the commuter train in the first 2.5 miles is:

a=\frac{[(15\,\frac{mi}{h} )\cdot (\frac{5280\,ft}{1\,mi} )\cdot (\frac{1\,h}{3600\,s} )]^{2}-[(50\,\frac{mi}{h} )\cdot (\frac{5280\,ft}{1\,mi} )\cdot (\frac{1\,h}{3600\,s} )]^{2}}{2\cdot (2.5\,mi)\cdot (\frac{5280\,ft}{1\,mi} )}

a = -0.185\,\frac{ft}{s^{2}}

The time required to travel is:

t = \frac{(15\,\frac{mi}{h} )\cdot (\frac{5280\,ft}{1\,fi} )\cdot(\frac{1\,h}{3600\,s} )-(50\,\frac{mi}{h} )\cdot (\frac{5280\,ft}{1\,fi} )\cdot(\frac{1\,h}{3600\,s} )}{-0.185\,\frac{ft}{s^{2}} }

t = 277.477\,s\,(4.625\min)

b) The commuter train must stop when it reaches the station to receive passengers. Hence, speed of train must be v_{f} = 0\,\frac{mi}{h}.

c) The final constant deceleration is:

a = \frac{(0\,\frac{mi}{h} )\cdot (\frac{5280\,ft}{1\,mi} )\cdot(\frac{1\,h}{3600\,s} )-(15\,\frac{mi}{h} )\cdot (\frac{5280\,ft}{1\,mi} )\cdot(\frac{1\,h}{3600\,s} )}{(2.875\,min)\cdot (\frac{60\,s}{1\,min} )}

a = -0.128\,\frac{ft}{s^{2}}

7 0
3 years ago
A piston-cylinder apparatus has a piston of mass 2kg and diameterof
iragen [17]

Answer:

M =2.33 kg

Explanation:

given data:

mass of piston - 2kg

diameter of piston is 10 cm

height of water 30 cm

atmospheric pressure 101 kPa

water temperature = 50°C

Density of water at 50 degree celcius is 988kg/m^3

volume of cylinder is  V = A \times h

                                       = \pi r^2 \times h

                                       = \pi 0.05^2\times 0.3

mass of available in the given container is

M = V\times d

  = volume \times density

= \pi 0.05^2\times 0.3 \times 988

M =2.33 kg

6 0
3 years ago
A Carnot cooler operates with COP = 11, whose ambient temperature is 300K. Determine the temperature at which the refrigerator a
SashulF [63]

Answer:

275 Kelvin

Explanation:

Coefficient of Performance=11

T_H=\text {Absolute Temperature of high temperature reservoir=300 K}

T_L=\text {Absolute Temperature of low temperature reservoir}

\text {Coefficient of performance for carnot cooler}\\=\frac {T_L}{T_H-T_L}\\\Rightarrow 11=\frac{T_L}{300-T_L}\\\Rightarrow 11(300-T_L)=T_L\\\Rightarrow 3300-11T_L=T_L\\\Rightarrow 3300=T_L+11T_L\\\Rightarrow 3300=12T_L\\\Rightarrow T_L=\frac {3300}{12}\\\Rightarrow T_L=275\ K\\\Therefore \text{Temperature at which the refrigerator absorbs heat=275 Kelvin}

8 0
3 years ago
Four kilograms of carbon monoxide (CO) is contained in a rigid tank with a volume of 1 m3. The tank is fitted with a paddle whee
Juli2301 [7.4K]

Answer:

a) 1 m^3/Kg  

b) 504 kJ

c) 514 kJ

Explanation:

<u>Given  </u>

-The mass of C_o2 = 1 kg  

-The volume of the tank V_tank = 1 m^3  

-The added energy E = 14 W  

-The time of adding energy t = 10 s  

-The increase in specific internal energy Δu = +10 kJ/kg  

-The change in kinetic energy ΔKE = 0 and The change in potential energy  

ΔPE =0  

<u>Required  </u>

(a)Specific volume at the final state v_2

(b)The energy transferred by the work W in kJ.  

(c)The energy transferred by the heat transfer W in kJ and the direction of  

the heat transfer.  

Assumption  

-Quasi-equilibrium process.  

<u>Solution</u>  

(a) The volume and the mass doesn't change then, the specific volume is constant.

 v= V_tank/m ---> 1/1= 1 m^3/Kg  

(b) The added work is defined by.  

W =E * t --->  14 x 10 x 3600 x 10^-3 = 504 kJ  

(c) From the first law of thermodynamics.  

Q - W = m * Δu

Q = (m * Δu) + W--> (1 x 10) + 504 = 514 kJ

The heat have (+) sign the n it is added to the system.

7 0
2 years ago
Other questions:
  • A 3-kg block rests on top of a 2-kg block supported by, but not attached to, a spring of constant 40 N/m. The upper block is sud
    14·2 answers
  • A tank contains 350 liters of fluid in which 50 grams of salt is dissolved. Pure water is then pumped into the tank at a rate of
    8·1 answer
  • A rigid 10-L vessel initially contains a mixture of liquid and vapor water at 100 °C, with a quality factor of 0.123. The mixtur
    11·1 answer
  • When using levers like scissors or hedge clippers, what can be done to increase the cutting force so that you don’t have to sque
    5·1 answer
  • why HF (hydrogen fluoride) has higher boiling temperature than HCl (hydrogen chloride), even thought HF has lower molecular weig
    8·1 answer
  • What is the purpose of a heater core
    5·2 answers
  • I study to get good grades because my parents want to send me to the college of my choice.” This is an a. Intrinsic motivational
    6·2 answers
  • Water at 20◦C is pumped through 1000 ft of 0.425 ft diameter pipe at a volumetric flowrate of 1 ft3/s through a cast iron pipe t
    14·1 answer
  • Which of the following was a sustainable power source used during the Middle Ages?
    9·2 answers
  • As you push a toggle bolt into a wall, the
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!