Answer:
m = 788.2[kg]
Explanation:
The potential energy of a body is defined as the product of mass by gravitational acceleration by height. And it can be calculated by means of the following equation.

where:
Epot = potential energy = 63405 [J]
m = mass [kg]
g = gravity acceleration = 9.81[m/s²]
h = elevation = 8.2[m]
Now replacing:
![63405=m*9.81*8.2\\m=788.2[kg]](https://tex.z-dn.net/?f=63405%3Dm%2A9.81%2A8.2%5C%5Cm%3D788.2%5Bkg%5D)
Answer:
C
Explanation:
If the theory were to be proved you you need to repeat the experiment over and over again so that way you can prove that it is true wuth the same results.
The answer is 4.0 kg since the flywheel comes to rest the
kinetic energy of the wheel in motion is spent doing the work. Using the
formula KE = (1/2) I w².
Given the following:
I = the moment of inertia about the
axis passing through the center of the wheel; w = angular velocity ; for the
solid disk as I = mr² / 2 so KE = (1/4) mr²w². Now initially, the wheel is spinning
at 500 rpm so w = 500 * (2*pi / 60) rad / sec = 52.36 rad / sec.
The radius = 1.2 m and KE = 3900 J
3900 J = (1/4) m (1.2)² (52.36)²
m = 3900 J / (0.25) (1.2)² (52.36)²
m = 3.95151 ≈ 4.00 kg
Answer:
The time required for one cycle, a complete motion that returns to its starting point,it is called periodic motion
Explanation:
I hope this will help you:)