Hello, love! The answer is True, or T, on Edge2020.
Hope this helped!
~ V.
I think it most likely burn since th metal tube is going to transfer so much heat
The net force on particle particle q1 is 13.06 N towards the left.
<h3>
Force on q1 due to q2</h3>
F(12) = kq₁q₂/r₂
F(12) = (9 x 10⁹ x 13 x 10⁻⁶ x 7.7 x 10⁻⁶)/(0.25²)
F(12) = -14.41 N (towards left)
<h3>Force
on q1 due to q3</h3>
F(13) = (9 x 10⁹ x 7.7 x 10⁻⁶ x 5.9 x 10⁻⁶)/(0.55²)
F(13) = 1.352 N (towards right)
<h3>Net force on q1</h3>
F(net) = 1.352 N - 14.41 N
F(net) = -13.06 N
Thus, the net force on particle particle q1 is 13.06 N towards the left.
Learn more about force here: brainly.com/question/12970081
#SPJ1
3 bulbs are in series and if the same 3 bulbs are in parallel with the same battery then the bulbs that are connected in parallel will be dimmer
<h3>What is power?</h3>
The rate of doing work is known as power. The Si unit of power is the watt.
Power =work/time
The mathematical expression for the electric power is as follows
P = VI
The same current flows through both bulbs when they are connected in series. A greater voltage drop across the bulb with the higher resistance will result in higher power dissipation and brightness. In the case of the parallel combination, the bulb will be dimmer
Thus, If the same three bulbs are connected in series and parallel with the same battery, the parallelly connected bulbs will be dimmer, therefore the correct option is A
Learn more about power from here
brainly.com/question/3854047
#SPJ1
Answer:
m = 35.98 Kg ≈ 36 Kg
Explanation:
I₀ = 125 kg·m²
R₁ = 1.50 m
ωi = 0.600 rad/s
R₂ = 0.905 m
ωf = 0.800 rad/s
m = ?
We can apply The law of conservation of angular momentum as follows:
Linitial = Lfinal
⇒ Ii*ωi = If*ωf <em>(I)</em>
where
Ii = I₀ + m*R₁² = 125 + m*(1.50)² = 125 + 2.25*m
If = I₀ + m*R₂² = 125 + m*(0.905)² = 125 + 0.819025*m
Now, we using the equation <em>(I) </em>we have
(125 + 2.25*m)*0.600 = (125 + 0.819025*m)*0.800
⇒ m = 35.98 Kg ≈ 36 Kg