1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sineoko [7]
3 years ago
12

Performance Task 2: "TAKE HOME TASK

Physics
1 answer:
jenyasd209 [6]3 years ago
6 0
I am dum sorry .........
You might be interested in
A 0.200-m uniform bar has a mass of 0.795 kg and is released from rest in the vertical position, as the drawing indicates. The s
aleksklad [387]

Explanation:

Since, the rod is present in vertical position and the spring is unrestrained.

So, initial potential energy stored in the spring is U_{s} = 0

And, initial potential gravitational potential energy of the rod is U_{g} = \frac{mgL}{2}.

It is given that,

       mass of the bar = 0.795 kg

            g = 9.8 m/s^{2}

           L = length of the rod = 0.2 m

Initial total energy T = \frac{mgL}{2}

Now, when the rod is in horizontal position then final total energy will be as follows.

            T = \frac{1}{2}kx^{2} + I \omega^{2}

where,    I = moment of inertia of the rod about the end = \frac{mL^{2}}{3}

Also,    \omega = \frac{\nu}{L}

where,    \nu = speed of the tip of the rod

              x = spring extension

The initial unstrained length is x_{o} = 0.1 m

Therefore, final length will be calculated as follows.

              x' = \sqrt{(0.2)^{2} + (0.1)^{2}} m

Then,  x = x' - x_{o}

          x = \sqrt{(0.2)^{2} + (0.1)^{2}} m - 0.1 m

             = 0.1236 m

       k = 25 N/m

So, according to the law of conservation of energy

       \frac{mgL}{2} = \frac{1}{2}kx^{2} + \frac{1 \times mL^{2}}{2 \times 3}(\frac{\nu}{L})^{2}

      \frac{mgL}{2} = \frac{1}{2}kx^{2} + \frac{1}{6}mv^{2}

Putting the given values into the above formula as follows.

   \frac{mgL}{2} = \frac{1}{2}kx^{2} + \frac{1}{6}mv^{2}

  \frac{0.795 kg \times 9.8 \times 0.2 m}{2} = \frac{1}{2} \times 27 N/m \times (0.1236)^{2} + \frac{1}{6} \times 0.795 \times v^{2}

          v = 2.079 m/s

Thus, we can conclude that tangential speed with which end A strikes the horizontal surface is 2.079 m/s.

7 0
3 years ago
If you were given distance and period of time, what can you calculate?
antiseptic1488 [7]

If you were given distance & period of time, you would be able to calculate the speed.

Hope this helps!

3 0
3 years ago
If you lift weights faster than normal you have increased what?
egoroff_w [7]
I belive it would power I’m not 100% sure. If it’s not power then force
8 0
3 years ago
Stick a fork into each end of the root vegetable as shown. The forks should be on the same side of the vegetable, and
zhuklara [117]

Answer:

Yes

Explanation:

There is a position that works better than this and that is switching the sides of the forks.

7 0
3 years ago
Two objects, m1 = 0.6 kg and m2 = 4.4 kg undergo a one-dimensional head-on collision
Sidana [21]

a) The velocity after the collision.is 11.456 m/s.

b) The kinetic energy lost due to the collision is 44.564 J.

<h3>What is conservation of momentum principle?</h3>

When two bodies of different masses move together each other and have head on collision, they travel to same or different direction after collision.

The external force is not acting here, so the initial momentum is equal to the final momentum. For inelastic collision, final velocity is the common velocity for both the bodies.

m₁u₁ +m₂u₂ =(m₁ +m₂) v

Given are the two objects, m1 = 0.6 kg and m2 = 4.4 kg undergo a one-dimensional head-on collision. Their initial velocities along the one-dimension path are vi1 = 32.4 m/s [right] and vi2 = 8.6 m/s [left].

(a) Substitute the values, then the final velocity will be

0.6 x32.4 +4.4 x 8.6 = (0.6+4.4)v

v = 11.456 m/s

Thus, the velocity after collision is 11.456 m/s.

(b) Kinetic energy lost due to collision will be the difference between the kinetic energy before and after collision.

= [1/2m₁u₁² +1/2m₂u₂² ] - [1/2(m₁ +m₂) v²]

Substitute the value, we have

= [1/2 x 0.6 x32.4² + 1/2 x4.4 x 8.6²] - [1/2 x(0.6+4.4)11.456²]

= 44.564 J

Thus, the kinetic energy lost due to the collision is 44.564 J.

Learn more about conservation of momentum principle

brainly.com/question/14033058

#SPJ2

4 0
2 years ago
Read 2 more answers
Other questions:
  • Which of the following phrases best describes the term "magnetic flux"?
    11·1 answer
  • How is air pressure related to elevation?
    8·1 answer
  • A cup of coffee sits on the dashboard of an automobile. Even though you hold the cup still, as the car goes around a sharp curve
    9·2 answers
  • A wave has a frequency of 80Hz, an amplitude of 6m, a wavelength of 4m as it travels down a 200m rope. What is the speed of the
    8·1 answer
  • Does the galvanometer deflect to the left or the right when:________
    13·1 answer
  • Caroline conducts research on how the amount of fiber in a student's breakfast affects their grades in school. How should she re
    8·2 answers
  • 11. What do foliated and un-foliated mean in metamorphic rocks?
    7·1 answer
  • Trong máy phát điện xoay chiều ba pha khi tổng điện áp tức thời của cuộn 1,2 là e1+e2=120V thì điện áp tức thời của cuộn 3 là
    14·1 answer
  • The answer is not B.
    9·1 answer
  • A pendulum is swinging next to a wall. The distance from the bob of the pendulum to the wall varies in a periodic way that can b
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!