Answer:
<em>Infrared telescope and camera</em>
<em></em>
Explanation:
An infrared telescope uses infrared light to detect celestial bodies. The infrared radiation is one of the known forms of electromagnetic radiation. Infrared radiation is given off by a body possessing some form of heat. All bodies above the absolute zero temperature in the universe radiates some form of heat, which can then be detected by an infrared telescope, and infrared radiation can be used to study or look into a system that is void of detectable visible light.
Stars are celestial bodies that are constantly radiating heat. In order to see a clearer picture of the these bodies, <em>Infrared images is better used, since they are able to penetrate the surrounding clouds of dust,</em> and have located many more stellar components than any other types of telescope, especially in dusty regions of star clusters like the Trapezium cluster.
 
        
             
        
        
        
answer: derived physical quantities are those quantities that are obtained from the basic physical quantities by multiplication or division and area is one of them
 
        
             
        
        
        
Explanation:
A student solving for the acceleration of an object has applied appropriate physics principles and obtained the expression :

Where


m = 7 kg
So, the correct step for obtaining a common denominator for the two fractions in the expression in solving for a is (a) and the value of a is :


Hence, the correct option is (a).
 
        
             
        
        
        
Answer:
B. Axial stress divided by axial strain
Explanation:
Elasticity:
It is the tendency of an object to deform along the axis when an opposing force is applied without facing permanent change in shape.
Plasticity:
When an object crosses the elasticity limit, it enters plasticity where the change due to stress is permanent and the object might even break.
Yield strength:
Yield strength is the point of maximum bearable stress that indicates the limit of elasticity.
Our case:
As the stress applied is less than the yield strength, the rod is still in the elasticity state and its modulus can be calculated.
Modulus of Elasticity = Stress along axis/Ratio of change in length to original length
Axial strain is basically the ratio of change in length to original length.
So, Modulus of Elasticity = Axial Stress/ Axial Strain