I think the elevation of Y and Z are the following:
<span>Y=3200,
Z=2900 </span>
Answer:
BC and DE
Explanation:
In the given figure, the velocity time graph is shown. We know that the area under v-t curve gives the displacement of the particle.
Area under AB, 
Area under BC, 
Area under CD, 
Area under DE, 
Area under EF, 
So, form above calculations it is clear that, during BC and DE undergo equal displacement. Hence, the correct option is (c) "BC and DE = 4 meters".
Letter B
without a medium, there is nothing to compress, hence, no wave. A fast- medium like a gas (air) is easy to compress and allows waves to move through it easily. a slow medium, like a liquid, is still pretty fast, but not as fast as air.
This is false. they flow west to east
Answer:
The tank is losing

Explanation:
According to the Bernoulli’s equation:
We are being informed that both the tank and the hole is being exposed to air :
∴ P₁ = P₂
Also as the tank is voluminous ; we take the initial volume
≅ 0 ;
then
can be determined as:![\sqrt{[2g (h_1- h_2)]](https://tex.z-dn.net/?f=%5Csqrt%7B%5B2g%20%28h_1-%20h_2%29%5D)
h₁ = 5 + 15 = 20 m;
h₂ = 15 m
![v_2 = \sqrt{[2*9.81*(20 - 15)]](https://tex.z-dn.net/?f=v_2%20%3D%20%5Csqrt%7B%5B2%2A9.81%2A%2820%20-%2015%29%5D)
![v_2 = \sqrt{[2*9.81*(5)]](https://tex.z-dn.net/?f=v_2%20%3D%20%5Csqrt%7B%5B2%2A9.81%2A%285%29%5D)
as it leaves the hole at the base.
radius r = d/2 = 4/2 = 2.0 mm
(a) From the law of continuity; its equation can be expressed as:
J = 
J = πr²
J =
J =
b)
How fast is the water from the hole moving just as it reaches the ground?
In order to determine that; we use the relation of the velocity from the equation of motion which says:
v² = u² + 2gh
₂
v² = 9.9² + 2×9.81×15
v² = 392.31
The velocity of how fast the water from the hole is moving just as it reaches the ground is : 
