Answer:
The time constant is 1.049.
Explanation:
Given that,
Charge 
We need to calculate the time constant
Using expression for charging in a RC circuit
![q(t)=q_{0}[1-e^{-(\dfrac{t}{RC})}]](https://tex.z-dn.net/?f=q%28t%29%3Dq_%7B0%7D%5B1-e%5E%7B-%28%5Cdfrac%7Bt%7D%7BRC%7D%29%7D%5D)
Where,
= time constant
Put the value into the formula
![0.65q_{0}=q_{0}[1-e^{-(\dfrac{t}{RC})}]](https://tex.z-dn.net/?f=0.65q_%7B0%7D%3Dq_%7B0%7D%5B1-e%5E%7B-%28%5Cdfrac%7Bt%7D%7BRC%7D%29%7D%5D)





Hence, The time constant is 1.049.
We don't know how many of ANY color are in the bag right now, so there's no way to calculate an answer.
What Tom has to do is make sure that the number of marbles that are NOT blue is NINE TIMES the number of blue ones in the bag.
Answer:
The angular speed of the reel is 11.33 rad/s
Explanation:
Given
The fisherman takes t = 8.4 s to wind distance x = 2.9 m into a circle radius of r = 3 cm = 0.03 m
Than the tangencial speed equals the change in the distance to the time
v =
= 
Knowing the tangencial velocity is proportional to the radius r and the angular velocity
v = r*w
w = 
Answer:
Distance: 21 yd, displacement: 15 yd, gain in the play: 12 yd
Explanation:
The distance travelled by Sam is just the sum of the length of each part of Sam's motion, regardless of the direction. Initially, Sam run from the 3 yd line to the 15 yd line, so (15-3)=12 yd. Then, he run also 9 yd to the right. Therefore, the total distance is
d = 12 + 9 = 21 yd
The displacement instead is a vector connecting the starting point with the final point of the motion. Sam run first 12 yd straight ahead and then 9 yd to the right; these two motions are perpendicular to each other, so we can find the displacement simply by using Pythagorean's theorem:

Finally, the yards gained by Sam in the play are simply given by the distance covered along the forward-backward direction only. Since Sam only run from the 3 yd line to the 15 yd line along this direction, then the gain in this play was
d = 15 - 3 = 12 yd
Answer: 14 m/s
Explanation:
The speed
of a sound wave is given by the following equation:
Where:
is the wavelength of the sound wave
Hence: