Answer:
i. The error is the rough convex mirror.
ii. This should be replaced with a smooth convex morror.
Explanation:
Reflection is dependent on the surface involved and has two types; diffuse and specular. When the surface is rough, diffused reflection is observed. The surface causes a distortion of the incident light (the rays would be reflected at different angles to one another) after reflection. This makes some rays to interfere with one another. While specular reflection is observed with a smooth surface.
In the statement, the rough convex mirror would produce a distorted reflection which would produce diffused reflection. The effect is that few or no rays (depending on the degree of how rough the surfce is) would be reflected to the other smooth, flat diagonal mirror.
(a) Period of the wave
The period of a wave is the time needed for a complete cycle of the wave to pass through a certain point.
So, if an entire cycle of the wave passes through the given location in 5.0 seconds, this means that the period is equal to 5.0 s: T=5.0 s.
(b) Frequency of the wave
The frequency of a wave is defined as

since in our problem the period is

, the frequency is

(c) Speed of the wave
The speed of a wave is given by the following relationship between frequency f and wavelength

:
They are helium nuclei, which consist of two protons and two neutrons. The net spin on an alpha particle is zero. They result from large, perilous atoms via a process called alpha decay.
<h3>What is
helium nuclei?</h3>
- The nucleus of the helium atom also understood as the α-particle, includes two protons and two neutrons, encompassed by two electrons.
- Alpha particles are helium nuclei with two protons and two neutrons attached. The development of their high mass and an electrical charge is their inability to infiltrate as deep as other particles such as protons and electrons.
- Particle beams contain α (alpha)-particles, β (beta)-particles, neutron beams, etc. α-particles are helium middles consisting of two protons and two neutrons that have lived removed at high speed, while β-particles are electrons removed from a nucleus. Particle shafts also include neutron beams and proton beams.
To learn more about helium nuclei, refer to:
brainly.com/question/26226232
#SPJ4
Answer: In a battery, voltage determines how strongly electrons are pushed through a circuit, much like pressure determines how strongly water is pushed through a hose. Most AAA, AA, C, and D batteries are around 1.5 volts. Imagine the batteries shown in the diagram are rated at 1.5 volts and 500 milliamp-hours.
Explanation: Today "AA" is frequently used as a size designation, irrespective of the battery's electrochemical system. The main numbers used for the most common NiMH and NiCad battery
-- The string is 1 m long. That's the radius of the circle that the mass is
traveling in. The circumference of the circle is (π) x (2R) = 2π meters .
-- The speed of the mass is (2π meters) / (0.25 sec) = 8π m/s .
-- Centripetal acceleration is V²/R = (8π m/s)² / (1 m) = 64π^2 m/s²
-- Force = (mass) x (acceleration) = (1kg) x (64π^2 m/s²) =
64π^2 kg-m/s² = 64π^2 N = about <span>631.7 N .
</span>That's it. It takes roughly a 142-pound pull on the string to keep
1 kilogram revolving at a 1-meter radius 4 times a second !<span>
</span>If you eased up on the string, the kilogram could keep revolving
in the same circle, but not as fast.
You also need to be very careful with this experiment, and use a string
that can hold up to a couple hundred pounds of tension without snapping.
If you've got that thing spinning at 4 times per second and the string breaks,
you've suddenly got a wild kilogram flying away from the circle in a straight
line, at 8π meters per second ... about 56 miles per hour ! This could definitely
be hazardous to the health of anybody who's been watching you and wondering
what you're doing.