Fresnel and Fraunhofer diffraction. Fresnel diffraction is produced when light from a point source meets an obstacle, the waves are spherical and the pattern observed is a fringed image of the object. Fraunhofer diffraction occurs with plane wave-fronts with the object effectively at infinity. The pattern is in a particular direction and is a fringed image of the source.
If you are under a tree, they kind of act like lightning rods, so stay away from trees, so roll in dat grass. Fun Fact: Lightning comes from the ground more than it comes from the sky, its like when you rub a blanket on your head, some lil' lightnings come from your head while a little come from the blanket, its the same with grass and clouds only, 10000 volts stronger and deadly.
Answer:
See answer
Explanation:
The area of the circular loop is given by:

The magnetic flux is given by:

is parallel to
and
is constant in magnitude and direction therefore:

Part A)
initially the flux is 
after the interval
the flux is

now, the EMF is defined as:
,
if we consider
very small then we can re-write it as:

then:
![\epsilon =- \frac{-0.12}{0.0024} = 50 [V]](https://tex.z-dn.net/?f=%5Cepsilon%20%3D-%20%5Cfrac%7B-0.12%7D%7B0.0024%7D%20%3D%2050%20%5BV%5D)
Part B)
When looked down from above, the current flows counter clockwise, according to the right hand rule, if you place your thumb upwards (the direction of the magnetic field) and close your fingers, then the current will flow in the direction of your fingers.
The first thing you should know for this case is the definition of distance.
d = v * t
Where,
v = speed
t = time
We have then:
d = v * t
d = 9 * 12 = 108 m
The kinetic energy is:
K = ½mv²
Where,
m: mass
v: speed
K = ½ * 1500 * (18) ² = 2.43 * 10 ^ 5 J
The work due to friction is
w = F * d
Where,
F = Force
d = distance:
w = 400 * 108 = 4.32 * 10 ^ 4
The power will be:
P = (K + work) / t
Where,
t: time
P = 2.86 * 10 ^ 5/12 = 23.9 kW
answer:
the average power developed by the engine is 23.9 kW